Introductory Econometrics

Lecture 13: Hypothesis testing in the multiple regression model

Instructor: Ma, Jun

Renmin University of China

October 25, 2021

The model

- ► We consider the classical normal linear regression model:
 - 1. $Y_i = \beta_0 + \beta_1 X_{1,i} + \ldots + \beta_k X_{k,i} + U_i$.
 - 2. Conditional on X's, $E[U_i] = 0$ for all i's.
 - 3. Conditional on X's, E $\left[U_i^2\right] = \sigma^2$ for all i's.
 - 4. Conditional on X's, $E\left[U_iU_j\right] = 0$ for all $i \neq j$.
 - 5. Conditional on X's, U_i 's are jointly normally distributed.
- ▶ We also continue to assume no perfect multicolinearity: The k regressors and constant do not form a perfect linear combination, i.e. we cannot find constants $c_1, \ldots, c_k, c_{k+1}$ (not all equal to zero) such that for all i's:

$$c_1 X_{1,i} + \ldots + c_k X_{k,i} + c_{k+1} = 0.$$

Testing a hypothesis about a single coefficient

- ► Take the *j*-th coefficient β_j , $j \in \{0, 1, ..., k\}$.
- ► Under our assumptions, its OLS estimator $\hat{\beta}_j$ satisfies that conditional on X's: $\hat{\beta}_j \sim N\left(\beta_j, \text{Var}\left[\hat{\beta}_j\right]\right)$, where $\text{Var}\left[\hat{\beta}_j\right] = \sigma^2/\sum_{i=1}^n \tilde{X}_{j,i}^2$.
- ► Therefore, $(\hat{\beta}_j \beta_j) / \sqrt{\text{Var} \left[\hat{\beta}_j\right]} \sim N(0, 1)$.
- ► The conditional variance Var $[\hat{\beta}_j]$ is unknown because σ^2 is unknown. The estimator for Var $[\hat{\beta}_j]$ is

$$\widehat{\text{Var}}\left[\hat{\beta}_{j}\right] = \frac{s^{2}}{\sum_{i=1}^{n} \tilde{X}_{j,i}^{2}},$$

where $s^2 = \sum_{i=1}^n \hat{U}_i^2 / (n - k - 1)$.

 \blacktriangleright We have that conditional on X's,

$$\frac{\hat{\beta}_j - \beta_j}{\sqrt{\widehat{\operatorname{Var}}\left[\hat{\beta}_j\right]}} \sim t_{n-k-1}.$$

► Standard error:
$$SE(\hat{\beta}_j) = \sqrt{\widehat{\operatorname{Var}}[\hat{\beta}_j]} = \sqrt{s^2/\sum_{i=1}^n \tilde{X}_{j,i}^2}$$
.

Testing a hypothesis about a single coefficient: Two-sided alternatives

- Consider testing $H_0: \beta_j = \beta_{j,0}$ against $H_1: \beta_j \neq \beta_{j,0}$.
- ▶ Under H_0 , we have that

$$T = \frac{\hat{\beta}_j - \beta_{j,0}}{\sqrt{\widehat{\operatorname{Var}}\left[\hat{\beta}_j\right]}} \sim t_{n-k-1}.$$

- ▶ Let $t_{df,\tau}$ be the τ -th quantile of the t_{df} distribution.
- ► Test: Reject H_0 when $|T| > t_{n-k-1,1-\alpha/2}$.
- ▶ P-value: Find $t_{n-k-1,1-\tau}$ such that $|T| = t_{n-k-1,1-\tau}$. The p-value= $\tau \times 2$.

Testing a hypothesis about a single coefficient: One-sided alternatives

- ► Consider testing $H_0: \beta_i \le \beta_{i,0}$ against $H_1: \beta_i > \beta_{i,0}$.
- ▶ When $\beta_j = \beta_{j,0}$ we have that

$$T = \frac{\hat{\beta}_j - \beta_{j,0}}{\sqrt{\widehat{\operatorname{Var}}\left[\hat{\beta}_j\right]}} \sim t_{n-k-1}.$$

- Let $t_{df,\tau}$ be the τ -th quantile of the t_{df} distribution.
- ► Test: Reject H_0 when $T > t_{n-k-1,1-\alpha}$.
- ▶ P-value: Find $t_{n-k-1,1-\tau}$ such that $T = t_{n-k-1,1-\tau}$. The *p*-value= τ .

Testing a hypothesis about a single linear combination of the coefficients

▶ Let c_0, c_1, \ldots, c_k, r be some constants. Consider testing

$$H_0: c_0\beta_0 + c_1\beta_1 + \ldots + c_k\beta_k = r$$
 against
 $H_1: c_0\beta_0 + c_1\beta_1 + \ldots + c_k\beta_k \neq r$.

► Example 1: Consider the model

$$\log Y_i = \beta_0 + \beta_1 \log L_i + \beta_2 \log K_i + U_i.$$

- We want to test for constant returns to scale $H_0: \beta_1 + \beta_2 = 1$.
- ► In this case: $c_0 = 0$, $c_1 = 1$, $c_2 = 1$, r = 1.

▶ Let $r, c_0, c_1, ..., c_k$ are some constants. Consider testing

$$H_0: c_0\beta_0 + c_1\beta_1 + \ldots + c_k\beta_k = r$$
 against
 $H_1: c_0\beta_0 + c_1\beta_1 + \ldots + c_k\beta_k \neq r$.

► Example 2: Consider the model

$$\log (Wage_i) = \beta_0 + \beta_1 Experience_i + \beta_2 Prev Experience_i + \beta_3 X_{3,i} + \dots + \beta_k X_{k,i} + U_i.$$

- ► We want to test that *Experience* and *PrevExperience* have the same effect on wage: $H_0: \beta_1 = \beta_2$ or $H_0: \beta_1 \beta_2 = 0$.
- ► In this case: $c_0 = 0$, $c_1 = 1$, $c_2 = -1$, $c_3 = ... = c_k = 0$, r = 0.

• We have that under $H_0: c_0\beta_0 + c_1\beta_1 + \ldots + c_k\beta_k = r$

$$\frac{c_0\hat{\beta}_0 + c_1\hat{\beta}_1 + \dots + c_k\hat{\beta}_k - r}{\sqrt{\operatorname{Var}\left[c_0\hat{\beta}_0 + c_1\hat{\beta}_1 + \dots + c_k\hat{\beta}_k\right]}} = \frac{c_0\hat{\beta}_0 + c_1\hat{\beta}_1 + \dots + c_k\hat{\beta}_k - (c_0\beta_0 + c_1\beta_1 + \dots + c_k\beta_k)}{\sqrt{\operatorname{Var}\left[c_0\hat{\beta}_0 + c_1\hat{\beta}_1 + \dots + c_k\hat{\beta}_k\right]}} \sim \operatorname{N}(0, 1).$$

Note that

$$\operatorname{Var}\left[c_0\hat{\beta}_0 + c_1\hat{\beta}_1 + \dots + c_k\hat{\beta}_k\right] = \sum_{j=1}^k c_j^2 \operatorname{Var}\left[\hat{\beta}_j\right] + \sum_{j=1}^k \sum_{l \neq j} c_j c_l \operatorname{Cov}\left[\hat{\beta}_j, \hat{\beta}_l\right].$$

► Consider

$$T = \frac{c_0 \hat{\beta}_0 + c_1 \hat{\beta}_1 + \ldots + c_k \hat{\beta}_k - r}{\sqrt{\widehat{\text{Var}} \left[c_0 \hat{\beta}_0 + c_1 \hat{\beta}_1 + \ldots + c_k \hat{\beta}_k \right]}}.$$

• Under $H_0: c_0\beta_0 + c_1\beta_1 + ... + c_k\beta_k = r$,

$$T \sim t_{n-k-1}$$
.

- ► Two-sided Test: Reject H_0 when $|T| > t_{n-k-1,1-\alpha/2}$.
- ► One-sided: When testing $H_0: c_0\beta_0 + c_1\beta_1 + \ldots + c_k\beta_k \le r$ against $H_1: c_0\beta_0 + c_1\beta_1 + \ldots + c_k\beta_k > r$, reject H_0 when $T > t_{n-k-1,1-\alpha}$.

- ► Consider the model $\ln Y_i = \beta_0 + \beta_1 \ln L_i + \beta_2 \ln K_i + U_i$.
- We want to test for constant returns to scale: $H_0: \beta_1 + \beta_2 = 1$.
- ► The test statistic: $T = \frac{\hat{\beta}_1 + \hat{\beta}_2 1}{\sqrt{\widehat{\text{Var}}[\hat{\beta}_1 + \hat{\beta}_2]}}$.
- $\blacktriangleright \ \widehat{\mathrm{Var}}\left[\hat{\beta}_1 + \hat{\beta}_2\right] = \widehat{\mathrm{Var}}\left[\hat{\beta}_1\right] + \widehat{\mathrm{Var}}\left[\hat{\beta}_2\right] + 2\widehat{\mathrm{Cov}}\left[\hat{\beta}_1, \hat{\beta}_2\right].$
 - ▶ $\widehat{\text{Var}}(\hat{\beta}_1)$ and $\widehat{\text{Var}}(\hat{\beta}_2)$ can be computed from the corresponding standard errors reported by Stata.
 - ▶ In Stata, $\widehat{\text{Cov}}\left[\hat{\beta}_1, \hat{\beta}_2\right]$ can be obtained (together with the variances) by using the command "matrix list e(V)" after running a regression.
- Reject $H_0: \beta_1 + \beta_2 = 1$ if $|T| > t_{n-3,1-\alpha/2}$.

Example

▶ 1000 observations were generated using the following model:

$$\begin{aligned} L_i &= e^{l_i} \\ K_i &= e^{k_i} \end{aligned} \text{ where } l_i, k_i \text{ are iid N } (0,1), \text{Cov } [l_i, k_l] = 0.5, \\ U_i &\sim \text{iid N } (0,1) \text{ is independent of } l_i, k_i, \\ Y_i &= L_i^{0.35} K_i^{0.52} e^{U_i}. \end{aligned}$$

► The following equation was estimated:

$$\log Y_i = \beta_0 + \beta_1 \log L_i + \beta_2 \log K_i + U_i.$$

► We test $H_0: \beta_1 + \beta_2 = 1$ against $H_1: \beta_1 + \beta_2 \neq 1$ at 5% significance level.

```
. regress lnY lnL lnK
     Source |
                   SS
                           df
                                   MS
                                                  Number of obs = 1000
                                                  F(2.997) = 321.51
      Model | 630.003101
                          2 315.00155
                                                  Prob > F
                                                           = 0.0000
   Residual |
              976.803234
                          997 .979742461
                                                  R-squared = 0.3921
                                                  Adj R-squared = 0.3909
      Total | 1606.80633
                                                  Root MSE
                          999 1.60841475
                                                               = .98982
        lnY I
                  Coef.
                        Std. Err.
                                       t P>|t|
                                                     [95% Conf. Interval]
        lnL |
               .4484374
                        .0356212
                                  12.59 0.000
                                                     .3785364
                                                                .5183385
              .466826
                                                   .3979636
        lnK |
                        .0350918 13.30 0.000
                                                                .5356883
      _cons | -.0195782
                         .0313531
                                  -0.62 0.532
                                                    -.0811039
                                                                .0419476
. matrix list e(V)
symmetric e(V)[3,3]
lnL
           1nK
                   cons
lnī.
     .00126887
 lnK -.00059823 .00123144
cons 5.066e-06
                 -.000058
                             00098302
. display invttail(997 ,0.025)
1.9623462
```

- ► We obtained:
 - $\hat{\beta}_1 = 0.4484374,$
 - $\hat{\beta}_2 = 0.466826.$
 - $ightharpoonup |\widehat{Var}[\hat{\beta}_1]| = 0.00126887 = 0.0356212^2$
 - $ightharpoonup |\widehat{\beta}_2| = 0.00123144 = 0.0350918^2.$
 - $ightharpoonup \widehat{\text{Cov}} \left[\hat{\beta}_1, \hat{\beta}_2 \right] = -0.00059823.$
 - $ightharpoonup t_{997,0.975} = 1.9623462.$

$$\sqrt{\widehat{\text{Var}}\left[\hat{\beta}_1 + \hat{\beta}_2\right]} = \sqrt{0.00126887 + 0.00123144 - 2 \times 0.00059823} = 0.036108863.$$

- $T = (0.4484374 + 0.466826 1) / 0.036108863 \approx -2.35,$
- ► $|T| = 2.35 > 1.962 = t_{997,0.975} \Longrightarrow$ We reject H_0 .
- Note that ignoring the coVariance leads to an incorrect result: $(0.4484374 + 0.466826 1) / \sqrt{0.0356212^2 + 0.0350918^2} \approx -1.69$.

An alternative approach

- We want to test $\beta_1 + \beta_2 = 1$ in $\log Y_i = \beta_0 + \beta_1 \log L_i + \beta_2 \log K_i + U_i$.
- ▶ Define $\delta = \beta_1 + \beta_2$ or $\beta_2 = \delta \beta_1$ so that

$$\log Y_i = \beta_0 + \beta_1 \log L_i + \beta_2 \log K_i + U_i$$

= $\beta_0 + \beta_1 \log L_i + (\delta - \beta_1) \log K_i + U_i$
= $\beta_0 + \beta_1 (\log L_i - \log K_i) + \delta \log K_i + U_i$.

- Generate a new variable $D_i = \log L_i \log K_i$.
- Estimate $\log Y_i = \beta_0 + \beta_1 D_i + \delta \log K_i + U_i$.
- ► Test H_0 : $\delta = 1$ against H_1 : $\delta \neq 1$.

Example

- . gen D=lnL-lnK
- . rearess lnY D lnF

. regress InY D	InK					
Source	SS	df	MS	Number	of obs = 100	00
					F(2, 997)	= 321.51
Model	630.003101	2	315.001551		Prob > F	= 0.0000
Residual	976.803233	997	.979742461		R-squared	= 0.3921
					Adj R-squared	= 0.3909
Total	1606.80633	999	1.60841475		Root MSE	= .98982
lnY	Coef.	Std. E	rr. t	P> t	[95% Conf.	Interval]
D	.4484374	.03562		0.000	.3785364	.5183385
lnK	.9152634	.03610	88 25.35	0.000	.8444054	.9861213
_cons	0195782	.03135	31 -0.62	0.532	0811039	.0419476

- ▶ The 95% CI for the coefficient on $\log K$ in the transformed mode does not include $1 \Longrightarrow \text{We reject } H_0$.
- Note that in the original equation $\hat{\beta}_1 + \hat{\beta}_2 = 0.9152634$ and $\sqrt{\widehat{\text{Var}} \left[\hat{\beta}_1 + \hat{\beta}_2 \right]} = 0.0361088$.

Multiple restrictions

► Consider the model:

$$\begin{split} &\log\left(Wage_{i}\right) = \beta_{0} + \beta_{1}Experience_{i} + \beta_{2}Experience_{i}^{2} + \\ &+ \beta_{3}PrevExperience_{i} + \beta_{4}PrevExperience_{i}^{2} + \beta_{5}Education_{i} + U_{i}, \end{split}$$

where *Experience* is the experience at current job, and *PrevExperience* is the previous experience.

► Suppose that we want to test the null hypothesis that, after controlling for the experience at current job and education, the previous experience has no effect on wage:

$$H_0: \beta_3 = 0, \beta_4 = 0.$$

- ▶ We have two restrictions on the model parameters.
- ► The alternative hypothesis is that at least one of the coefficients, β_3 or β_4 , is different from zero:

$$H_1: \beta_3 \neq 0 \text{ or } \beta_4 \neq 0.$$

t-statistics and multiple restrictions

Let T_3 and T_4 be the *t*-statistics associated with the coefficients of PrevExperience and $PrevExperience^2$:

$$T_3 = \frac{\hat{\beta}_3}{SE(\hat{\beta}_3)}$$
 and $T_4 = \frac{\hat{\beta}_4}{SE(\hat{\beta}_4)}$.

- We can use T_3 and T_4 to test significance of β_3 and β_4 separately by using two separate size α tests:
 - ► Reject $H_{0,3}$: $\beta_3 = 0$ in favor of $H_{1,3}$: $\beta_3 \neq 0$ when $|T_3| > t_{n-k-1,1-\alpha/2}$.
 - ► Reject $H_{0,4}$: $\beta_4 = 0$ in favor of $H_{1,4}$: $\beta_4 \neq 0$ when $|T_4| > t_{n-k-1,1-\alpha/2}$.

► Rejecting $H_0: \beta_3 = 0, \beta_4 = 0$ in favor of $H_1: \beta_3 \neq 0$ or $\beta_4 \neq 0$ when at least one of the two coefficients is significant at level α , i.e. when

$$|T_3| > t_{n-k-1,1-\alpha/2}$$
 or $|T_4| > t_{n-k-1,1-\alpha/2}$,

is not a size α test!

- ► Recall that if *A* and *B* are two sets then $(A \cap B) \subset A$ and therefore $Pr(A \cap B) \leq Pr(A)$.
- $\blacktriangleright \text{ When } \beta_3 = \beta_4 = 0:$

$$\begin{split} \Pr\left(\text{Reject } H_{0,3} \text{ or } H_{0,4} \right) &= \\ &= \Pr\left[|T_3| > t_{n-k-1,1-\alpha/2} \text{ or } |T_4| > t_{n-k-1,1-\alpha/2} \right] \\ &= \Pr\left[|T_3| > t_{n-k-1,1-\alpha/2} \right] + \Pr\left[|T_4| > t_{n-k-1,1-\alpha/2} \right] \\ &- \Pr\left[|T_3| > t_{n-k-1,1-\alpha/2} \text{ and } |T_4| > t_{n-k-1,1-\alpha/2} \right] \\ &= \alpha + \alpha - \Pr\left[|T_3| > t_{n-k-1,1-\alpha/2} \text{ and } |T_4| > t_{n-k-1,1-\alpha/2} \right] \\ &\geq \alpha. \end{split}$$

Testing multiple exclusion restrictions

► Consider the model

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \dots + \beta_q X_{q,i} + \beta_{q+1} X_{q+1,i} + \dots + \beta_k X_{k,i} + U_i.$$

Suppose that we want to test that the first q regressors have no effect on Y (after controlling for other regressors).

ightharpoonup The null hypothesis has q exclusion restrictions:

$$H_0: \beta_1 = 0, \beta_2 = 0, \dots, \beta_q = 0.$$

► The alternative hypothesis is that at least one of the restrictions in *H*₀ is false:

$$H_1: \beta_1 \neq 0 \text{ or } \beta_2 \neq 0 \text{ or } \dots \text{ or } \beta_q \neq 0.$$

F-statistic

- ► The idea of the test is to compare the fit of the unrestricted model with that of the null-restricted model.
- Let SSR_{ur} denote the Residual Sum-of-Squares of the unrestricted model

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \dots + \beta_q X_{q,i} + \beta_{q+1} X_{q+1,i} + \dots + \beta_k X_{k,i} + U_i.$$

► The restricted model given $H_0: \beta_1 = 0, ..., \beta_q = 0$ is

$$Y_i = \beta_0 + \beta_{q+1} X_{q+1,i} + \ldots + \beta_k X_{k,i} + U_i.$$

- ightharpoonup Let SSR_r denote the Residual Sum-of-Squares of the restricted model.
- ► Consider the following statistic:

$$F = \frac{(SSR_r - SSR_{ur})/q}{SSR_{ur}/(n-k-1)}.$$

- Note that q = number of restrictions;
- ▶ n-k-1 = unrestricted residual df, where k is the number of regressors in the unrestricted model.

$$F = \frac{(SSR_r - SSR_{ur})/q}{SSR_{ur}/(n-k-1)}.$$

► Since SSR can only increase when you drop some regressors,

$$SSR_r - SSR_{ur} \ge 0$$

and therefore $F \ge 0$.

- ► If the null restrictions are true, the excluded Variables do not contribute to explaining Y (in population), and therefore we should expect that $SSR_r SSR_{ur}$ is small and F is close to zero.
- ▶ If the null restriction are false, the imposed restriction should substantially worsen the fit, and we should expect that $SSR_r SSR_{ur}$ is large and F is far from zero.
- ▶ Thus, we should reject H_0 when F > c where c is some positive constant.

F test

$$F = \frac{\left(SSR_r - SSR_{ur}\right)/q}{SSR_{ur}/(n-k-1)}.$$

- ▶ We should reject H_0 when F > c.
- There is a probability that F > c even when H_0 is true, thus we need to choose c so that $Pr[F > c|H_0$ is true] = α .
- ▶ It turns out that when H_0 is true, the F-statistic has F distribution with two parameters: the numerator df (q) and the denominator df (n k 1):

$$F \sim F_{q,n-k-1}$$
.

► Similarly to the standard normal and *t* distributions, the *F* distribution has been tabulated and its critical values are available in statistical tables and statistical software such as Stata.

When H_0 is true,

$$F = \frac{\left(SSR_r - SSR_{ur}\right)/q}{SSR_{ur}/(n-k-1)} \sim F_{q,n-k-1}.$$

- ▶ Let $F_{q,n-k-1,\tau}$ be the τ -quantile of the $F_{q,n-k-1}$ distribution.
- A size α test $H_0: \beta_1 = 0, \dots, \beta_q = 0$ against $H_1: \beta_1 \neq 0$ or ... or $\beta_q \neq 0$ is

Reject
$$H_0$$
 when $F > F_{q,n-k-1,1-\alpha}$.

• One can find the *p*-value by finding τ such that $F = F_{q,n-k-1,1-\tau}$. The *p*-value is equal to τ .

F distribution in Stata

ightharpoonup To compute F critical values use

disp invFtail
$$(q, n - k - 1, \alpha)$$
.

ightharpoonup To compute p-values from F distribution use

disp Ftail
$$(q, n - k - 1, F)$$
.

Example

► Consider the model:

$$\log(Wage_i) = \beta_0 + \beta_1 Experience_i + \beta_2 Experience_i^2 +$$
$$+ \beta_3 PrevExperience_i + \beta_4 PrevExperience_i^2 + \beta_5 Education_i + U_i.$$

► We test

$$H_0: \beta_3 = 0, \beta_4 = 0$$
 against $H_1: \beta_3 \neq 0$ or $\beta_4 \neq 0$.

- ► q = 2.
- $\sim \alpha = 0.05.$

Example: the unrestricted model

. regress lnWag Source	SS	df		MS	perience	Number of obs	=	526
Model Residual	51.3318741 96.9978773	5 520	10.26 .1865	63748 34379		F(5, 520) Prob > F R-squared Adj R-squared	= =	55.04 0.0000 0.3461 0.3398
Total	148.329751	525	.282	53286			=	.4319
lnWage	Coef.			t			Int	erval]
Experience Experience2 PrevExperi~e PrevExperi~2 Education _cons	.0471914 0008518 .0168997 0003727 .0887704 .2368427	.0068 .0002 .0047 .0001 .0072	074 472 331 208	6.93 -3.45 3.57 -3.09 12.31 2.30	0.000 0.001 0.000 0.002 0.000 0.022	.0338179 0013374 .0076013	0 .0 0 .1	605649 003662 261981 001354 029408 389346

- \triangleright *SSR*_{ur} =96.9978773.
- n k 1 = 526 5 1 = 520.

Example: the restricted model

. regress lnWag	e Experience	Exper	ience2	Educa ⁻	tion		
Source	SS	df	1	MS		Number of obs =	526
						F(3, 522) =	85.49
Model	48.8668114	3	16.28	89371		Prob > F =	0.0000
Residual	99.46294	522	.1905	42031		R-squared =	0.3294
+-						Adj R-squared =	0.3256
Total	148.329751	525	.282	53286		Root MSE =	.43651
lnWage	Coef.	Std.	Err.	t	P> t	[95% Conf. In	terval]
+-							
Experience	.0510784	.0067	937	7.52	0.000	.037732 .0	9644248
Experience2	0009941	.0002	463	-4.04	0.000	0014780	0005103
Education	.0852822	.0068	978	12.36	0.000	.0717313 .0	988331
_cons	.3688491	.0908	138	4.06	0.000	.1904437 .	5472544

 \triangleright *SSR*_r =99.46294.

Example: F statistic and test

► To compute the statistic:

$$F = \frac{\left(SSR_r - SSR_{ur}\right)/q}{SSR_{ur}/(n-k-1)} = \frac{\left(99.46294 - 96.9978773\right)/2}{96.9978773/(526-5-1)} \approx 6.61.$$

- ► The critical value:
 - . disp invFtail(2,520,0.05)
 - 3.0130572
- ► The test: 6.61 > 3.0130572 and at 5% significance level we reject H_0 that previous experience has no effect on wage.
- ▶ The p-value:
 - . disp Ftail(2,520,6.61)
 - .00146284
 - \Longrightarrow We reject H_0 for any $\alpha > 0.00146284$.

Example: Stata test command

- ► Instead of running two models, restricted and unrestricted, one can use the Stata test command after estimation of the unrestricted model.
- ► To test that previous experience has no effect:
 - . test (PrevExperience=0) (PrevExperience2=0)
- ► The output of this command is:
 - (1) PrevExperience = 0
 - (2) PrevExperience2 = 0

F(2, 520) = 6.61

Prob > F = 0.0015

► To test that the coefficient on previous experience equal to the coefficient on experience and the coefficient on previous experience squared is zero:

. test (Experience==PrevExperience2) (PrevExperience2=0)

- ► The output is:
 - (1) Experience PrevExperience2 = 0
 - (2) PrevExperience2 = 0

$$F(2, 520) = 31.94$$

$$Prob > F = 0.0000$$

F and R^2

▶ Let R_{ur}^2 denote the R^2 corresponding to the unrestricted model:

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \ldots + \beta_q X_{q,i} + \beta_{q+1} X_{q+1,i} + \ldots + \beta_k X_{k,i} + U_i.$$

▶ Let R_r^2 denote the R^2 corresponding to the restricted model:

$$Y_i = \beta_0 + \beta_{q+1} X_{q+1,i} + \ldots + \beta_k X_{k,i} + U_i.$$

► The two models have the same dependent variable and therefore the same Total Sum-of-Squares:

$$SST = \sum_{i=1}^{n} (Y_i - \bar{Y})^2 = SST_{ur} = SST_r.$$

► In this case, we can write then

$$F = \frac{(SSR_r - SSR_{ur})/q}{SSR_{ur}/(n-k-1)}$$

$$= \frac{\left(\frac{SSR_r}{SST} - \frac{SSR_{ur}}{SST}\right)/q}{\frac{SSR_{ur}}{SST}/(n-k-1)}$$

$$= \frac{\left(1 - R_r^2 - \left(1 - R_{ur}^2\right)\right)/q}{\left(1 - R_{ur}^2\right)/(n-k-1)}$$

$$= \frac{\left(R_{ur}^2 - R_r^2\right)/q}{\left(1 - R_{ur}^2\right)/(n-k-1)}.$$

F test: more examples

► Suppose that you want to test $H_0: \beta_1 = 1$ against $H_1: \beta_1 \neq 1$ in

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \ldots + \beta_k X_{k,i} + U_i.$$

► The restricted model is

$$Y_i = \beta_0 + X_{1,i} + \beta_2 X_{2,i} + \ldots + \beta_k X_{k,i} + U_i,$$

or

$$Y_i - X_{1,i} = \beta_0 + \beta_2 X_{2,i} + \ldots + \beta_k X_{k,i} + U_i$$
.

- 1. Generate a new dependent variable $Y_i^* = Y_i X_{1,i}$.
- 2. Regress Y^* against a constant, X_2, \ldots, X_k to obtain SSR_r .
- 3. Estimate the unrestricted model to obtain SSR_{ur} .
- 4. Compute $F = \frac{(SSR_r SSR_{ur})/1}{SSR_{ur}/(n-k-1)}$.

Suppose that you want to test $H_0: \beta_1 + \beta_2 = 1$ against $H_1: \beta_1 + \beta_2 \neq 1$ in

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \ldots + \beta_k X_{k,i} + U_i.$$

► The restricted model is

$$Y_i = \beta_0 + (1 - \beta_2) X_{1,i} + \beta_2 X_{2,i} + \ldots + \beta_k X_{k,i} + U_i,$$

or

$$Y_i - X_{1,i} = \beta_0 + \beta_2 (X_{2,i} - X_{1,i}) + \ldots + \beta_k X_{k,i} + U_i.$$

- 1. Generate a new dependent variable $Y_i^* = Y_i X_{1,i}$.
- 2. Generate a new regressor $X_2^* = X_{2,i} X_{1,i}$.
- 3. Regress Y^* against a constant, X_2^*, X_3, \ldots, X_k to obtain SSR_r .
- 4. Estimate the unrestricted model to obtain SSR_{ur} .
- 5. Compute $F = \frac{(SSR_r SSR_{ur})/1}{SSR_{ur}/(n-k-1)}$.

Relationship between F and t statistics

- ► The *F* statistic can also be used for testing a single restriction.
- ► In the case of a single restriction, the *F* test and *t* test lead to the same outcome because

$$t_{n-k-1}^2 = F_{1,n-k-1}.$$

Test of model significance

► Consider the model

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \ldots + \beta_k X_{k,i} + U_i.$$

► Suppose that you want to test that none of the regressors explain *Y*:

$$H_0$$
: $\beta_1 = \beta_2 = ... = \beta_k = 0$ (k restrictions) against H_1 : $\beta_i \neq 0$ for some $j = 1, ..., k$.

► The restricted model is given by

$$Y_i = \beta_0 + U_i,$$

and since $\hat{\beta}_0 = \bar{Y}$ in this model,

$$SSR_r = \sum_{i=1}^n (Y_i - \bar{Y})^2 = SST$$
 and $SSR_{ur} = SSR$.

► The F statistic for model significance test is

$$F = \frac{(SSR_r - SSR_{ur})/k}{SSR_{ur}/(n-k-1)}$$

$$= \frac{(SST - SSR)/k}{SSR/(n-k-1)}$$

$$= \frac{SSE/k}{SSR/(n-k-1)}$$

$$= \frac{R^2/k}{(1-R^2)/(n-k-1)}.$$

► The *F* statistic for the model significance test and its *p*-value is reported by Stata as in the top part of the regression output.

Source	SS	df	MS	Number of obs =	526
+-				F(5, 520) =	55.04
Model	51.3318741	5	10.2663748	Prob > F =	0.0000
Residual	96.9978773	520	.186534379	R-squared =	0.3461
+-				Adj R-squared =	0.3398
Total	148.329751	525	.28253286	Root MSE =	.4319