Introductory Econometrics Lecture 13: Hypothesis testing in the multiple regression model

Instructor: Ma, Jun

Renmin University of China

April 26, 2023

The model

 \triangleright We consider the classical normal linear regression model:

- 1. $Y_i = \beta_0 + \beta_1 X_{1,i} + \ldots + \beta_k X_{k,i} + U_i.$
- 2. Conditional on X's, $E[U_i] = 0$ for all i's.
- 3. Conditional on X's, $E[U_i^2] = \sigma^2$ for all *i*'s.
- 4. Conditional on X's, $E[U_iU_j] = 0$ for all $i \neq j$.
- 5. Conditional on X 's, U_i 's are jointly normally distributed.
- \blacktriangleright We also continue to assume no perfect multicolinearity: The k regressors and constant do not form a perfect linear combination, i.e. we cannot find constants $c_1, \ldots, c_k, c_{k+1}$ (not all equal to zero) such that for all i 's:

$$
c_1 X_{1,i} + \ldots + c_k X_{k,i} + c_{k+1} = 0.
$$

Testing a hypothesis about a single coefficient

- ▶ Take the *j*-th coefficient β_j , $j \in \{0, 1, ..., k\}$.
- \blacktriangleright Under our assumptions, its OLS estimator $\hat{\beta}_j$ satisfies that conditional on X's: $\hat{\beta}_j \sim N(\beta_j, \text{Var}[\hat{\beta}_j])$, where Var $\left[\hat{\beta}_j\right] = \sigma^2 / \sum_{i=1}^n \check{\tilde{X}}_{j,i}^2$.
- Fine Therefore, $(\hat{\beta}_j \beta_j) / \sqrt{\text{Var}[\hat{\beta}_j]} \sim N(0, 1)$.
- \blacktriangleright The conditional variance Var $\left[\hat{\beta}_j\right]$ is unknown because σ^2 is unknown. The estimator for Var $\left[\hat{\beta}_j\right]$ is

$$
\widehat{\text{Var}}\left[\hat{\beta}_j\right] = \frac{s^2}{\sum_{i=1}^n \tilde{X}_{j,i}^2},
$$

where $s^2 = \sum_{i=1}^n \hat{U}_i^2/(n-k-1)$.

 \blacktriangleright We have that conditional on X's,

$$
\frac{\hat{\beta}_j - \beta_j}{\sqrt{\widehat{\text{Var}}\left[\hat{\beta}_j\right]}} \sim t_{n-k-1}.
$$

Standard error: $SE(\hat{\beta}_j) = \sqrt{\widehat{\text{Var}}[\hat{\beta}_j]} = \sqrt{s^2/\sum_{i=1}^n \tilde{X}_{j,i}^2}$.

Testing a hypothesis about a single coefficient: Two-sided alternatives

- Consider testing H_0 : $\beta_j = \beta_{j,0}$ against H_1 : $\beta_j \neq \beta_{j,0}$.
- \blacktriangleright Under H_0 , we have that

$$
T = \frac{\hat{\beta}_j - \beta_{j,0}}{\sqrt{\widehat{\text{Var}}\left[\hat{\beta}_j\right]}} \sim t_{n-k-1}.
$$

- Example 1 Let $t_{df, \tau}$ be the τ -th quantile of the t_{df} distribution.
- Fest: Reject H_0 when $|T| > t_{n-k-1,1-\alpha/2}$.
- P-value: Find $t_{n-k-1,1-\tau}$ such that $|T| = t_{n-k-1,1-\tau}$. The p -value= $\tau \times 2$.

Testing a hypothesis about a single coefficient: One-sided alternatives

- ► Consider testing H_0 : $\beta_j \leq \beta_{j,0}$ against H_1 : $\beta_j > \beta_{j,0}$.
- \blacktriangleright When $\beta_i = \beta_{i,0}$ we have that

$$
T = \frac{\hat{\beta}_j - \beta_{j,0}}{\sqrt{\widehat{\text{Var}}\left[\hat{\beta}_j\right]}} \sim t_{n-k-1}.
$$

- \blacktriangleright Let $t_{df, \tau}$ be the τ -th quantile of the t_{df} distribution.
- Fest: Reject H_0 when $T > t_{n-k-1,1-\alpha}$.
- P-value: Find $t_{n-k-1,1-\tau}$ such that $T = t_{n-k-1,1-\tau}$. The p-value= τ .

Testing a hypothesis about a single linear combination of the coefficients

 \blacktriangleright Let c_0, c_1, \ldots, c_k, r be some constants. Consider testing

 H_0 : $c_0\beta_0$ + $c_1\beta_1$ + ... + $c_k\beta_k$ = r against H_1 : $c_0 \beta_0 + c_1 \beta_1 + \ldots + c_k \beta_k \neq r$.

Example 1: Consider the model

$$
\log(Y_i) = \beta_0 + \beta_1 \log(L_i) + \beta_2 \log(K_i) + U_i.
$$

 \blacktriangleright We want to test for constant returns to scale $H_0 : \beta_1 + \beta_2 = 1$. In this case: $c_0 = 0, c_1 = 1, c_2 = 1, r = 1$.

 \blacktriangleright Let r, c_0, c_1, \ldots, c_k are some constants. Consider testing

$$
H_0: c_0\beta_0 + c_1\beta_1 + \ldots + c_k\beta_k = r \text{ against}
$$

$$
H_1: c_0\beta_0 + c_1\beta_1 + \ldots + c_k\beta_k \neq r.
$$

Example 2: Consider the model

 $log (Wage_i) = \beta_0 + \beta_1$ *Experience*_i + β_2 *PrevExperience*_i $+\beta_3 X_{3,i} + \dots \beta_k X_{k,i} + U_i.$

- \blacktriangleright We want to test that *Experience* and *PrevExperience* have the same effect on wage: H_0 : $\beta_1 = \beta_2$ or H_0 : $\beta_1 - \beta_2 = 0$.
- In this case: $c_0 = 0, c_1 = 1, c_2 = -1, c_3 = \ldots = c_k = 0, r = 0$.

 \blacktriangleright We have that under H_0 : $c_0\beta_0 + c_1\beta_1 + \ldots + c_k\beta_k = r$

$$
\frac{c_0\hat{\beta}_0 + c_1\hat{\beta}_1 + \ldots + c_k\hat{\beta}_k - r}{\sqrt{\text{Var}\left[c_0\hat{\beta}_0 + c_1\hat{\beta}_1 + \ldots + c_k\hat{\beta}_k\right]}} =
$$
\n
$$
\frac{c_0\hat{\beta}_0 + c_1\hat{\beta}_1 + \ldots + c_k\hat{\beta}_k - (c_0\beta_0 + c_1\beta_1 + \ldots + c_k\beta_k)}{\sqrt{\text{Var}\left[c_0\hat{\beta}_0 + c_1\hat{\beta}_1 + \ldots + c_k\hat{\beta}_k\right]}} \sim N(0, 1).
$$

 \blacktriangleright Note that

$$
\text{Var}\left[c_0\hat{\beta}_0 + c_1\hat{\beta}_1 + \dots + c_k\hat{\beta}_k\right] =
$$
\n
$$
\sum_{j=0}^k c_j^2 \text{Var}\left[\hat{\beta}_j\right] + \sum_{j=0}^k \sum_{l \neq j} c_j c_l \cdot \text{Cov}\left[\hat{\beta}_j, \hat{\beta}_l\right].
$$

\blacktriangleright Consider

$$
T = \frac{c_0\hat{\beta}_0 + c_1\hat{\beta}_1 + \ldots + c_k\hat{\beta}_k - r}{\sqrt{\widehat{\text{Var}}\left[c_0\hat{\beta}_0 + c_1\hat{\beta}_1 + \ldots + c_k\hat{\beta}_k\right]}}.
$$

$$
\blacktriangleright \text{ Under } H_0: c_0\beta_0 + c_1\beta_1 + \ldots + c_k\beta_k = r,
$$

$$
T \sim t_{n-k-1}.
$$

- \triangleright Two-sided Test: Reject H_0 when $|T| > t_{n-k-1,1-\alpha/2}$.
- \triangleright One-sided: When testing H_0 : $c_0\beta_0 + c_1\beta_1 + \ldots + c_k\beta_k \leq r$ against H_1 : $c_0 \beta_0 + c_1 \beta_1 + \ldots + c_k \beta_k > r$, reject H_0 when $T > t_{n-k-1,1-\alpha}$.
- Consider the model log $(Y_i) = \beta_0 + \beta_1 \log(L_i) + \beta_2 \log(K_i) + U_i$.
- \blacktriangleright We want to test for constant returns to scale: $H_0 : \beta_1 + \beta_2 = 1$.
- The test statistic: $T = \frac{\hat{\beta}_1 + \hat{\beta}_2 1}{\sqrt{2\pi\hat{\beta}_1 + \sqrt{2\pi\hat{\beta}_2}}}$ $\sqrt{\widehat{\text{Var}}\big[\hat{\beta}_1 + \hat{\beta}_2\big]}$.
- $\blacktriangleright \quad \widehat{\text{Var}}\left[\hat{\beta}_1 + \hat{\beta}_2\right] = \widehat{\text{Var}}\left[\hat{\beta}_1\right] + \widehat{\text{Var}}\left[\hat{\beta}_2\right] + 2\widehat{\text{Cov}}\left[\hat{\beta}_1, \hat{\beta}_2\right].$
	- \blacktriangleright $\widehat{\text{Var}}(\hat{\beta}_1)$ and $\widehat{\text{Var}}(\hat{\beta}_2)$ can be computed from the corresponding standard errors reported by Stata.
	- In Stata, $\widehat{\text{Cov}}\left[\hat{\beta}_1, \hat{\beta}_2\right]$ can be obtained (together with the variances) by using the command "matrix list $e(V)$ " after running a regression.
- \triangleright Reject H_0 : $\beta_1 + \beta_2 = 1$ if $|T| > t_{n-3,1-\alpha/2}$.

Example

 \blacktriangleright 1000 observations were generated using the following model:

$$
L_i = e^{l_i}
$$

\n
$$
K_i = e^{k_i}
$$
 where l_i, k_i are iid N (0, 1), Cov $[l_i, k_i] = 0.5$,
\n
$$
U_i \sim \text{iid N (0, 1) is independent of } l_i, k_i,
$$

\n
$$
Y_i = L_i^{0.35} K_i^{0.52} e^{U_i}.
$$

 \blacktriangleright The following equation was estimated:

$$
\log(Y_i) = \beta_0 + \beta_1 \log(L_i) + \beta_2 \log(K_i) + U_i.
$$

 \triangleright We test $H_0 : \beta_1 + \beta_2 = 1$ against $H_1 : \beta_1 + \beta_2 \neq 1$ at 5% significance level.

lnL lnK _cons lnL .00126887 lnK -.00059823 .00123144 _cons 5.066e-06 -.000058 .00098302 . display invttail(997 ,0.025) 1.9623462

 \blacktriangleright We obtained:

\n- $$
\hat{\beta}_1 = 0.4484374
$$
,
\n- $\hat{\beta}_2 = 0.466826$.
\n- $\hat{\text{Var}} [\hat{\beta}_1] = 0.00126887 = 0.0356212^2$
\n- $\hat{\text{Var}} [\hat{\beta}_2] = 0.00123144 = 0.0350918^2$.
\n- $\hat{\text{Cov}} [\hat{\beta}_1, \hat{\beta}_2] = -0.00059823$.
\n- $t_{997,0.975} = 1.9623462$.
\n

$$
\triangleright \sqrt{\widehat{\text{Var}}\left[\widehat{\beta}_1 + \widehat{\beta}_2\right]} =
$$

 $0.00126887 + 0.00123144 - 2 \times 0.00059823 = 0.036108863.$

- \blacktriangleright $T = (0.4484374 + 0.466826 1) / 0.036108863 \approx -2.35$,
- $|T| = 2.35 > 1.962 = t_{997.0.975} \implies$ We reject H_0 .
- \triangleright Note that ignoring the covariance leads to an incorrect result: $(0.4484374 + 0.466826 - 1) / √{0.0356212^2 + 0.0350918^2} \approx$ −1.69.

An alternative approach

$$
\Rightarrow \text{ We want to test } \beta_1 + \beta_2 = 1 \text{ in}
$$

log $(Y_i) = \beta_0 + \beta_1 \log (L_i) + \beta_2 \log (K_i) + U_i$.

► Define $\delta = \beta_1 + \beta_2$ or $\beta_2 = \delta - \beta_1$ so that

$$
\log(Y_i) = \beta_0 + \beta_1 \log(L_i) + \beta_2 \log(K_i) + U_i
$$

= $\beta_0 + \beta_1 \log(L_i) + (\delta - \beta_1) \log(K_i) + U_i$
= $\beta_0 + \beta_1 (\log(L_i) - \log(K_i)) + \delta \cdot \log(K_i) + U_i.$

- \triangleright Generate a new variable $D_i = \log(L_i) \log(K_i)$.
- Estimate $log(Y_i) = \beta_0 + \beta_1 D_i + \delta \cdot log(K_i) + U_i$.
- \blacktriangleright Test $H_0 : \delta = 1$ against $H_1 : \delta \neq 1$.

Example

- . gen D=lnL-lnK
- . regress lnY D lnK

- \blacktriangleright The 95% CI for the coefficient on log (K) in the transformed mode does not include $1 \Longrightarrow$ We reject H_0 .
- Note that in the original equation $\hat{\beta}_1 + \hat{\beta}_2 = 0.9152634$ and $\sqrt{\widehat{\text{Var}} [\hat{\beta}_1 + \hat{\beta}_2]} = 0.0361088.$

Multiple restrictions

 \blacktriangleright Consider the model:

 $\log (Wage_i) = \beta_0 + \beta_1 Experience_i + \beta_2 Experience_i^2 +$ $+\beta_3 Prev Experience_i + \beta_4 Prev Experience_i^2 + \beta_5 Education_i + U_i,$

where *is the experience at current job, and* $PrevExperience$ is the previous experience.

 \triangleright Suppose that we want to test the null hypothesis that, after controlling for the experience at current job and education, the previous experience has no effect on wage:

$$
H_0: \beta_3 = 0, \beta_4 = 0.
$$

- \triangleright We have two restrictions on the model parameters.
- \blacktriangleright The alternative hypothesis is that at least one of the coefficients, β_3 or β_4 , is different from zero:

$$
H_1: \beta_3 \neq 0 \text{ or } \beta_4 \neq 0.
$$

-statistics and multiple restrictions

 \blacktriangleright Let T_3 and T_4 be the *t*-statistics associated with the coefficients of PrevExperience and PrevExperience²:

$$
T_3 = \frac{\hat{\beta}_3}{SE\left(\hat{\beta}_3\right)} \text{ and } T_4 = \frac{\hat{\beta}_4}{SE\left(\hat{\beta}_4\right)}.
$$

- \blacktriangleright We can use T_3 and T_4 to test significance of β_3 and β_4 separately by using two separate size α tests:
	- Reject H_0 3 : β ₃ = 0 in favor of H_1 3 : β ₃ \neq 0 when $|T_3| > t_{n-k-1,1-\alpha/2}$.
	- Reject $H_{0,4}$: $\beta_4 = 0$ in favor of $H_{1,4}$: $\beta_4 \neq 0$ when $|T_4| > t_{n-k-1,1-\alpha/2}.$

Rejecting H_0 : $\beta_3 = 0$, $\beta_4 = 0$ in favor of H_1 : $\beta_3 \neq 0$ or $\beta_4 \neq 0$ when at least one of the two coefficients is significant at level α , i.e. when

$$
|T_3| > t_{n-k-1,1-\alpha/2}
$$
 or $|T_4| > t_{n-k-1,1-\alpha/2}$,

is not a size α test!

- ► Recall that if A and B are two sets then $(A \cap B) \subseteq A$ and therefore $Pr(A \cap B) \leq Pr(A)$.
- \blacktriangleright When $\beta_3 = \beta_4 = 0$:

$$
\Pr\left(\text{Reject } H_{0,3} \text{ or } H_{0,4}\right) =
$$
\n
$$
= \Pr\left[|T_3| > t_{n-k-1,1-\alpha/2} \text{ or } |T_4| > t_{n-k-1,1-\alpha/2}\right]
$$
\n
$$
= \Pr\left[|T_3| > t_{n-k-1,1-\alpha/2}\right] + \Pr\left[|T_4| > t_{n-k-1,1-\alpha/2}\right]
$$
\n
$$
- \Pr\left[|T_3| > t_{n-k-1,1-\alpha/2} \text{ and } |T_4| > t_{n-k-1,1-\alpha/2}\right]
$$
\n
$$
= \alpha + \alpha - \Pr\left[|T_3| > t_{n-k-1,1-\alpha/2} \text{ and } |T_4| > t_{n-k-1,1-\alpha/2}\right] \ge \alpha.
$$

Testing multiple exclusion restrictions

 \blacktriangleright Consider the model

$$
Y_i = \beta_0 + \beta_1 X_{1,i} + \ldots + \beta_q X_{q,i} + \beta_{q+1} X_{q+1,i} + \ldots + \beta_k X_{k,i} + U_i.
$$

Suppose that we want to test that the first q regressors have no effect on Y (after controlling for other regressors).

 \triangleright The null hypothesis has *q* exclusion restrictions:

$$
H_0: \beta_1 = 0, \beta_2 = 0, \ldots, \beta_q = 0.
$$

 \blacktriangleright The alternative hypothesis is that at least one of the restrictions in H_0 is false:

$$
H_1: \beta_1 \neq 0 \text{ or } \beta_2 \neq 0 \text{ or } \dots \text{ or } \beta_q \neq 0.
$$

-statistic

- \blacktriangleright The idea of the test is to compare the fit of the unrestricted model with that of the null-restricted model.
- \blacktriangleright Let *SSR_{ur}* denote the Residual Sum-of-Squares of the unrestricted model

$$
Y_i = \beta_0 + \beta_1 X_{1,i} + \ldots + \beta_q X_{q,i} + \beta_{q+1} X_{q+1,i} + \ldots + \beta_k X_{k,i} + U_i.
$$

 \blacktriangleright The restricted model given $H_0 : \beta_1 = 0, \ldots, \beta_q = 0$ is

$$
Y_i = \beta_0 + \beta_{q+1} X_{q+1,i} + \ldots + \beta_k X_{k,i} + U_i.
$$

 \blacktriangleright Let*SSR_r* denote the Residual Sum-of-Squares of the restricted model. \triangleright Consider the following statistic:

$$
F = \frac{(SSR_r - SSR_{ur})/q}{SSR_{ur}/(n-k-1)}.
$$

- \triangleright Note that $q =$ number of restrictions;
- \blacktriangleright $n k 1$ = unrestricted residual df, where k is the number of regressors in the unrestricted model.

$$
F = \frac{(SSR_r - SSR_{ur})/q}{SSR_{ur}/(n-k-1)}.
$$

 \triangleright Since SSR can only increase when you drop some regressors,

$$
SSR_r - SSR_{ur} \ge 0,
$$

and therefore $F \geq 0$.

- \blacktriangleright If the null restrictions are true, the excluded variables do not contribute to explaining Y (in population), and therefore we should expect that $SSR_r - SSR_{ur}$ is small and F is close to zero.
- \blacktriangleright If the null restriction are false, the imposed restriction should substantially worsen the fit, and we should expect that $SSR_r - SSR_{\mu r}$ is large and *F* is far from zero.
- In Thus, we should reject H_0 when $F > c$ where c is some positive constant.

F test

$$
F = \frac{(SSR_r - SSR_{ur})/q}{SSR_{ur}/(n-k-1)}.
$$

- \blacktriangleright We should reject H_0 when $F > c$.
- \blacktriangleright There is a probability that $F > c$ even when H_0 is true, thus we need to choose c so that Pr $[F > c | H_0$ is true] = α .
- It turns out that when H_0 is true, the F-statistic has F distribution with two parameters: the numerator $df(q)$ and the denominator df $(n - k - 1)$:

$$
F \sim F_{q,n-k-1}.
$$

 \blacktriangleright Similarly to the standard normal and *t* distributions, the F distribution has been tabulated and its critical values are available in statistical tables and statistical software such as Stata. When H_0 is true,

$$
F = \frac{(SSR_r - SSR_{ur})/q}{SSR_{ur}/(n-k-1)} \sim F_{q,n-k-1}.
$$

- ► Let $F_{q,n-k-1,\tau}$ be the τ -quantile of the $F_{q,n-k-1}$ distribution.
- A size α test H_0 : $\beta_1 = 0, \ldots, \beta_q = 0$ against $H_1 : \beta_1 \neq 0$ or \ldots or $\beta_q \neq 0$ is

Reject H_0 when $F > F_{a, n-k-1, 1-\alpha}$.

 \triangleright One can find the p-value by finding τ such that $F = F_{q,n-k-1,1-\tau}$. The *p*-value is equal to τ .

F distribution in Stata

 \triangleright To compute F critical values use

disp invFtail $(q, n - k - 1, \alpha)$.

 \blacktriangleright To compute p-values from F distribution use

disp Ftail $(q, n - k - 1, F)$.

Example

 \triangleright Consider the model:

 $\log (Wage_i) = \beta_0 + \beta_1 Experience_i + \beta_2 Experience_i^2 +$ $+\beta_3 Prev Experience_i + \beta_4 Prev Experience_i^2 + \beta_5 Education_i + U_i.$

 \blacktriangleright We test

 H_0 : $\beta_3 = 0$, $\beta_4 = 0$ against H_1 : $\beta_3 \neq 0$ or $\beta_4 \neq 0$.

- \blacktriangleright $q = 2$.
- $\triangleright \alpha = 0.05$.

Example: the unrestricted model

- \blacktriangleright SSR_{ur} =96.9978773.
- \blacktriangleright $n k 1 = 526 5 1 = 520$.

Example: the restricted model

 \blacktriangleright SSR_r =99.46294.

Example: F statistic and test

 \triangleright To compute the statistic:

$$
F = \frac{(SSR_r - SSR_{ur})/q}{SSR_{ur}/(n-k-1)} = \frac{(99.46294 - 96.9978773)/2}{96.9978773/(526 - 5 - 1)} \approx 6.61.
$$

- \blacktriangleright The critical value:
	- . disp invFtail(2,520,0.05)
	- 3.0130572
- \blacktriangleright The test: 6.61 > 3.0130572 and at 5% significance level we reject H_0 that previous experience has no effect on wage.
- \blacktriangleright The *p*-value:
	- . disp Ftail(2,520,6.61)
	- .00146284

 \Rightarrow We reject H_0 for any $\alpha > 0.00146284$.

Example: Stata test command

- \blacktriangleright Instead of running two models, restricted and unrestricted, one can use the Stata test command after estimation of the unrestricted model.
- \triangleright To test that previous experience has no effect:
	- . test (PrevExperience=0) (PrevExperience2=0)

 \blacktriangleright The output of this command is:

 (1) PrevExperience = 0 (2) PrevExperience2 = 0 $F(2, 520) = 6.61$ $Prob > F = 0.0015$

 \triangleright To test that the coefficient on previous experience equal to the coefficient on experience and the coefficient on previous experience squared is zero:

. test (Experience==PrevExperience2) (PrevExperience2=0)

 \blacktriangleright The output is:

 (1) Experience - PrevExperience $2 = 0$ (2) PrevExperience2 = 0 F(2, 520) = 31.94 $Prob > F = 0.0000$

F and R^2

Example 1 Let R_{ur}^2 denote the R^2 corresponding to the unrestricted model:

$$
Y_i = \beta_0 + \beta_1 X_{1,i} + \ldots + \beta_q X_{q,i} + \beta_{q+1} X_{q+1,i} + \ldots + \beta_k X_{k,i} + U_i.
$$

Example 1 Let R_r^2 denote the R^2 corresponding to the restricted model:

$$
Y_i = \beta_0 + \beta_{q+1} X_{q+1,i} + \ldots + \beta_k X_{k,i} + U_i.
$$

 \blacktriangleright The two models have the same dependent variable and therefore the same Total Sum-of-Squares:

$$
SST = \sum_{i=1}^{n} (Y_i - \overline{Y})^2 = SST_{ur} = SST_r.
$$

\blacktriangleright In this case, we can write then

$$
F = \frac{(SSR_r - SSR_{ur})/q}{SSR_{ur}/(n - k - 1)}
$$

=
$$
\frac{\left(\frac{SSR_r}{SST} - \frac{SSR_{ur}}{SST}\right)/q}{\frac{SSR_{ur}}{SST}/(n - k - 1)}
$$

=
$$
\frac{\left(1 - R_r^2 - \left(1 - R_{ur}^2\right)\right)/q}{\left(1 - R_{ur}^2\right)/(n - k - 1)}
$$

=
$$
\frac{\left(R_{ur}^2 - R_r^2\right)/q}{\left(1 - R_{ur}^2\right)/(n - k - 1)}
$$
.

.

F test: more examples

► Suppose that you want to test H_0 : $\beta_1 = 1$ against H_1 : $\beta_1 \neq 1$ in

$$
Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \ldots + \beta_k X_{k,i} + U_i.
$$

 \blacktriangleright The restricted model is

$$
Y_i = \beta_0 + X_{1,i} + \beta_2 X_{2,i} + \ldots + \beta_k X_{k,i} + U_i,
$$

or

$$
Y_i - X_{1,i} = \beta_0 + \beta_2 X_{2,i} + \ldots + \beta_k X_{k,i} + U_i.
$$

1. Generate a new dependent variable $Y_i^* = Y_i - X_{1,i}$.

- 2. Regress Y^* against a constant, X_2, \ldots, X_k to obtain SSR_r .
- 3. Estimate the unrestricted model to obtain SSR_{ur} .

4. Compute
$$
F = \frac{(SSR_r - SSR_{ur})/1}{SSR_{ur}/(n-k-1)}
$$
.

 \triangleright Suppose that you want to test H_0 : $\beta_1 + \beta_2 = 1$ against H_1 : $\beta_1 + \beta_2 \neq 1$ in

$$
Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \ldots + \beta_k X_{k,i} + U_i.
$$

 \blacktriangleright The restricted model is

$$
Y_i = \beta_0 + (1 - \beta_2) X_{1,i} + \beta_2 X_{2,i} + \ldots + \beta_k X_{k,i} + U_i,
$$

or

$$
Y_i - X_{1,i} = \beta_0 + \beta_2 (X_{2,i} - X_{1,i}) + \ldots + \beta_k X_{k,i} + U_i.
$$

- 1. Generate a new dependent variable $Y_i^* = Y_i X_{1,i}$.
- 2. Generate a new regressor $X_2^* = X_{2,i} X_{1,i}$.
- 3. Regress Y^* against a constant, X_2^*, X_3, \ldots, X_k to obtain SSR_r .
- 4. Estimate the unrestricted model to obtain SSR_{ur} .
- 5. Compute $F = \frac{(SSR_r SSR_{ur})/1}{SSR_{ur}/(n-k-1)}$.

Relationship between F and t statistics

- \blacktriangleright The *F* statistic can also be used for testing a single restriction.
- In the case of a single restriction, the F test and t test lead to the same outcome because

$$
t_{n-k-1}^2 = F_{1,n-k-1}.
$$

Test of model significance

 \triangleright Consider the model

$$
Y_i = \beta_0 + \beta_1 X_{1,i} + \ldots + \beta_k X_{k,i} + U_i.
$$

- \triangleright Suppose that you want to test that none of the regressors explain $Y:$
	- H_0 : $\beta_1 = \beta_2 = \ldots = \beta_k = 0$ (k restrictions) against

$$
H_1 : \beta_j \neq 0 \text{ for some } j = 1, \dots, k.
$$

 \blacktriangleright The restricted model is given by

$$
Y_i = \beta_0 + U_i,
$$

and since $\hat{\beta}_0 = \bar{Y}$ in this model,

$$
SSR_r = \sum_{i=1}^{n} (Y_i - \overline{Y})^2 = SST \text{ and } SSR_{ur} = SSR.
$$

 \blacktriangleright The *F* statistic for model significance test is

$$
F = \frac{(SSR_r - SSR_{ur})/k}{SSR_{ur}/(n-k-1)}
$$

$$
= \frac{(SST - SSR)/k}{SSR/(n-k-1)}
$$

$$
= \frac{SSE/k}{SSR/(n-k-1)}
$$

$$
= \frac{R^2/k}{(1-R^2)/(n-k-1)}.
$$

 \blacktriangleright The *F* statistic for the model significance test and its *p*-value is reported by Stata as in the top part of the regression output.

Model selection

 \triangleright If a subset of the coefficients in the linear model

$$
Y_i = \beta_0 + \beta_1 X_{1,i} + \ldots + \beta_k X_{k,i} + U_i
$$

are exactly zero, we wish to find the smallest sub-model consisting of only explanatory variables with nonzero coefficients.

- Estimate the full model with all variables. Let $T_j = \hat{\beta}_j / SE(\hat{\beta}_j)$ denote the *t*-statistic for H_0 : $\beta_j = 0$ versus H_1 : $\beta_j \neq 0$.
- \blacktriangleright Order $T_1, ..., T_k$ in absolute value:

$$
|T_{(1)}| \ge |T_{(2)}| \ge \cdots \ge |T_{(k)}|.
$$

- Exerc
interpret Let \hat{j} be the value of j that minimizes $RSS(j) + j \cdot s^2 \log(n)$, where $RSS (i)$ is the residual sum of squares from the model with $\dot{\mathbf{i}}$ variables corresponding to the $\dot{\mathbf{i}}$ largest absolute \mathbf{t} -statistics.
- \triangleright The selected model is the model with \hat{j} variables corresponding to the \hat{i} largest absolute *t*-statistics.
- \blacktriangleright When *n* is large, with high probability, this selected model is the same as the smallest sub-model with only nonzero coefficients.