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The model

I We consider the classical normal linear regression model:
1. 𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 + . . . + 𝛽𝑘𝑋𝑘,𝑖 +𝑈𝑖 .
2. Conditional on 𝑋’s, E [𝑈𝑖] = 0 for all 𝑖’s.
3. Conditional on 𝑋’s, E

[
𝑈2
𝑖

]
= 𝜎2 for all 𝑖’s.

4. Conditional on 𝑋’s, E
[
𝑈𝑖𝑈 𝑗

]
= 0 for all 𝑖 ≠ 𝑗 .

5. Conditional on 𝑋’s,𝑈𝑖’s are jointly normally distributed.
I We also continue to assume no perfect multicolinearity: The 𝑘

regressors and constant do not form a perfect linear combination,
i.e. we cannot find constants 𝑐1, . . . , 𝑐𝑘 , 𝑐𝑘+1 (not all equal to
zero) such that for all 𝑖’s:

𝑐1𝑋1,𝑖 + . . . + 𝑐𝑘𝑋𝑘,𝑖 + 𝑐𝑘+1 = 0.
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Testing a hypothesis about a single coefficient

I Take the 𝑗-th coefficient 𝛽 𝑗 , 𝑗 ∈ {0, 1, . . . , 𝑘} .
I Under our assumptions, its OLS estimator 𝛽 𝑗 satisfies that

conditional on 𝑋’s: 𝛽 𝑗 ∼ N
(
𝛽 𝑗 , Var

[
𝛽 𝑗

] )
, where

Var
[
𝛽 𝑗

]
= 𝜎2/∑𝑛

𝑖=1 �̃�
2
𝑗,𝑖 .

I Therefore,
(
𝛽 𝑗 − 𝛽 𝑗

)
/
√︃

Var
[
𝛽 𝑗

]
∼ N (0, 1) .

I The conditional variance Var
[
𝛽 𝑗

]
is unknown because 𝜎2 is

unknown.The estimator for Var
[
𝛽 𝑗

]
is

V̂ar
[
𝛽 𝑗

]
=

𝑠2∑𝑛
𝑖=1 �̃�

2
𝑗,𝑖

,

where 𝑠2 =
∑𝑛

𝑖=1 �̂�
2
𝑖
/(𝑛 − 𝑘 − 1).
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I We have that conditional on 𝑋’s,

𝛽 𝑗 − 𝛽 𝑗√︃
V̂ar

[
𝛽 𝑗

] ∼ 𝑡𝑛−𝑘−1.

I Standard error: 𝑆𝐸
(
𝛽 𝑗

)
=

√︃
V̂ar

[
𝛽 𝑗

]
=

√︃
𝑠2/∑𝑛

𝑖=1 �̃�
2
𝑗,𝑖 .
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Testing a hypothesis about a single coefficient: Two-sided
alternatives

I Consider testing 𝐻0 : 𝛽 𝑗 = 𝛽 𝑗,0 against 𝐻1 : 𝛽 𝑗 ≠ 𝛽 𝑗,0.
I Under 𝐻0, we have that

𝑇 =
𝛽 𝑗 − 𝛽 𝑗,0√︃
V̂ar

[
𝛽 𝑗

] ∼ 𝑡𝑛−𝑘−1.

I Let 𝑡𝑑 𝑓 ,𝜏 be the 𝜏-th quantile of the 𝑡𝑑 𝑓 distribution.
I Test: Reject 𝐻0 when |𝑇 | > 𝑡𝑛−𝑘−1,1−𝛼/2.
I P-value: Find 𝑡𝑛−𝑘−1,1−𝜏 such that |𝑇 | = 𝑡𝑛−𝑘−1,1−𝜏 . The
𝑝-value=𝜏 × 2.
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Testing a hypothesis about a single coefficient: One-sided
alternatives

I Consider testing 𝐻0 : 𝛽 𝑗 ≤ 𝛽 𝑗,0 against 𝐻1 : 𝛽 𝑗 > 𝛽 𝑗,0.
I When 𝛽 𝑗 = 𝛽 𝑗,0 we have that

𝑇 =
𝛽 𝑗 − 𝛽 𝑗,0√︃
V̂ar

[
𝛽 𝑗

] ∼ 𝑡𝑛−𝑘−1.

I Let 𝑡𝑑 𝑓 ,𝜏 be the 𝜏-th quantile of the 𝑡𝑑 𝑓 distribution.
I Test: Reject 𝐻0 when 𝑇 > 𝑡𝑛−𝑘−1,1−𝛼.
I P-value: Find 𝑡𝑛−𝑘−1,1−𝜏 such that 𝑇 = 𝑡𝑛−𝑘−1,1−𝜏 . The 𝑝-value=𝜏.
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Testing a hypothesis about a single linear combination of the
coefficients

I Let 𝑐0, 𝑐1, . . . , 𝑐𝑘 , 𝑟 be some constants. Consider testing

𝐻0 : 𝑐0𝛽0 + 𝑐1𝛽1 + . . . + 𝑐𝑘 𝛽𝑘 = 𝑟 against
𝐻1 : 𝑐0𝛽0 + 𝑐1𝛽1 + . . . + 𝑐𝑘 𝛽𝑘 ≠ 𝑟 .

I Example 1: Consider the model

log (𝑌𝑖) = 𝛽0 + 𝛽1 log (𝐿𝑖) + 𝛽2 log (𝐾𝑖) +𝑈𝑖 .

I We want to test for constant returns to scale 𝐻0 : 𝛽1 + 𝛽2 = 1.
I In this case: 𝑐0 = 0, 𝑐1 = 1, 𝑐2 = 1, 𝑟 = 1.
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I Let 𝑟 , 𝑐0, 𝑐1, . . . , 𝑐𝑘 are some constants. Consider testing

𝐻0 : 𝑐0𝛽0 + 𝑐1𝛽1 + . . . + 𝑐𝑘 𝛽𝑘 = 𝑟 against
𝐻1 : 𝑐0𝛽0 + 𝑐1𝛽1 + . . . + 𝑐𝑘 𝛽𝑘 ≠ 𝑟 .

I Example 2: Consider the model

log (𝑊𝑎𝑔𝑒𝑖) = 𝛽0 + 𝛽1Experience𝑖 + 𝛽2PrevExperience𝑖
+ 𝛽3𝑋3,𝑖 + . . . 𝛽𝑘𝑋𝑘,𝑖 +𝑈𝑖 .

I We want to test that 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 and 𝑃𝑟𝑒𝑣𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 have the
same effect on wage: 𝐻0 : 𝛽1 = 𝛽2 or 𝐻0 : 𝛽1 − 𝛽2 = 0.

I In this case: 𝑐0 = 0, 𝑐1 = 1, 𝑐2 = −1, 𝑐3 = . . . = 𝑐𝑘 = 0, 𝑟 = 0.
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I We have that under 𝐻0 : 𝑐0𝛽0 + 𝑐1𝛽1 + . . . + 𝑐𝑘 𝛽𝑘 = 𝑟

𝑐0𝛽0 + 𝑐1𝛽1 + . . . + 𝑐𝑘 𝛽𝑘 − 𝑟√︃
Var

[
𝑐0𝛽0 + 𝑐1𝛽1 + . . . + 𝑐𝑘 𝛽𝑘

] =

𝑐0𝛽0 + 𝑐1𝛽1 + . . . + 𝑐𝑘 𝛽𝑘 − (𝑐0𝛽0 + 𝑐1𝛽1 + . . . + 𝑐𝑘 𝛽𝑘)√︃
Var

[
𝑐0𝛽0 + 𝑐1𝛽1 + . . . + 𝑐𝑘 𝛽𝑘

]
∼ N (0, 1) .

I Note that

Var
[
𝑐0𝛽0 + 𝑐1𝛽1 + . . . + 𝑐𝑘 𝛽𝑘

]
=

𝑘∑︁
𝑗=0
𝑐2
𝑗Var

[
𝛽 𝑗

]
+

𝑘∑︁
𝑗=0

∑︁
𝑙≠ 𝑗

𝑐 𝑗𝑐𝑙 · Cov
[
𝛽 𝑗 , 𝛽𝑙

]
.
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I Consider

𝑇 =
𝑐0𝛽0 + 𝑐1𝛽1 + . . . + 𝑐𝑘 𝛽𝑘 − 𝑟√︃
V̂ar

[
𝑐0𝛽0 + 𝑐1𝛽1 + . . . + 𝑐𝑘 𝛽𝑘

] .

I Under 𝐻0 : 𝑐0𝛽0 + 𝑐1𝛽1 + . . . + 𝑐𝑘 𝛽𝑘 = 𝑟,

𝑇 ∼ 𝑡𝑛−𝑘−1.

I Two-sided Test: Reject 𝐻0 when |𝑇 | > 𝑡𝑛−𝑘−1,1−𝛼/2.
I One-sided: When testing 𝐻0 : 𝑐0𝛽0 + 𝑐1𝛽1 + . . . + 𝑐𝑘 𝛽𝑘 ≤ 𝑟

against 𝐻1 : 𝑐0𝛽0 + 𝑐1𝛽1 + . . . + 𝑐𝑘 𝛽𝑘 > 𝑟, reject 𝐻0 when
𝑇 > 𝑡𝑛−𝑘−1,1−𝛼.
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I Consider the model log (𝑌𝑖) = 𝛽0 + 𝛽1log (𝐿𝑖) + 𝛽2log (𝐾𝑖) +𝑈𝑖 .
I We want to test for constant returns to scale: 𝐻0 : 𝛽1 + 𝛽2 = 1.
I The test statistic: 𝑇 =

𝛽1+𝛽2−1√︃
V̂ar[𝛽1+𝛽2]

.

I V̂ar
[
𝛽1 + 𝛽2

]
= V̂ar

[
𝛽1
]
+ V̂ar

[
𝛽2
]
+ 2Ĉov

[
𝛽1, 𝛽2

]
.

I V̂ar
(
𝛽1
)

and V̂ar
(
𝛽2
)

can be computed from the corresponding
standard errors reported by Stata.

I In Stata, Ĉov
[
𝛽1, 𝛽2

]
can be obtained (together with the

variances) by using the command "matrix list e(V)" after running
a regression.

I Reject 𝐻0 : 𝛽1 + 𝛽2 = 1 if |𝑇 | > 𝑡𝑛−3,1−𝛼/2.
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Example

I 1000 observations were generated using the following model:

𝐿𝑖 = 𝑒
𝑙𝑖

𝐾𝑖 = 𝑒
𝑘𝑖

}
where 𝑙𝑖 , 𝑘𝑖 are iid N (0, 1) , Cov [𝑙𝑖 , 𝑘𝑖] = 0.5,

𝑈𝑖 ∼ iid N (0, 1) is independent of 𝑙𝑖 , 𝑘𝑖 ,
𝑌𝑖 = 𝐿

0.35
𝑖 𝐾0.52

𝑖 𝑒𝑈𝑖 .

I The following equation was estimated:

log (𝑌𝑖) = 𝛽0 + 𝛽1 log (𝐿𝑖) + 𝛽2 log (𝐾𝑖) +𝑈𝑖 .

I We test 𝐻0 : 𝛽1 + 𝛽2 = 1 against 𝐻1 : 𝛽1 + 𝛽2 ≠ 1 at 5%
significance level.
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. regress lnY lnL lnK

Source | SS df MS Number of obs = 1000
-------------+------------------------------ F( 2, 997) = 321.51

Model | 630.003101 2 315.00155 Prob > F = 0.0000

Residual | 976.803234 997 .979742461 R-squared = 0.3921
-------------+------------------------------ Adj R-squared = 0.3909

Total | 1606.80633 999 1.60841475 Root MSE = .98982

------------------------------------------------------------------------------

lnY | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

lnL | .4484374 .0356212 12.59 0.000 .3785364 .5183385

lnK | .466826 .0350918 13.30 0.000 .3979636 .5356883

_cons | -.0195782 .0313531 -0.62 0.532 -.0811039 .0419476
------------------------------------------------------------------------------
. matrix list e(V)

symmetric e(V)[3,3]
lnL lnK _cons

lnL .00126887
lnK -.00059823 .00123144

_cons 5.066e-06 -.000058 .00098302
. display invttail(997 ,0.025)
1.9623462
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I We obtained:
I 𝛽1 = 0.4484374,
I 𝛽2 = 0.466826.
I V̂ar

[
𝛽1
]
= 0.00126887 = 0.03562122

I V̂ar
[
𝛽2
]
= 0.00123144 = 0.03509182.

I Ĉov
[
𝛽1, 𝛽2

]
= −0.00059823.

I 𝑡997,0.975 =1.9623462.

I
√︃

V̂ar
[
𝛽1 + 𝛽2

]
=

√
0.00126887 + 0.00123144 − 2 × 0.00059823 =0.036108863.

I 𝑇 = (0.4484374 + 0.466826 − 1) /0.036108863 ≈ −2.35,
I |𝑇 | = 2.35 > 1.962 = 𝑡997,0.975=⇒ We reject 𝐻0.
I Note that ignoring the covariance leads to an incorrect result:

(0.4484374 + 0.466826 − 1) /
√︁

0.03562122 + 0.03509182 ≈
−1.69.
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An alternative approach

I We want to test 𝛽1 + 𝛽2 = 1 in
log (𝑌𝑖) = 𝛽0 + 𝛽1 log (𝐿𝑖) + 𝛽2 log (𝐾𝑖) +𝑈𝑖 .

I Define 𝛿 = 𝛽1 + 𝛽2 or 𝛽2 = 𝛿 − 𝛽1 so that

log (𝑌𝑖) = 𝛽0 + 𝛽1 log (𝐿𝑖) + 𝛽2 log (𝐾𝑖) +𝑈𝑖

= 𝛽0 + 𝛽1 log (𝐿𝑖) + (𝛿 − 𝛽1) log (𝐾𝑖) +𝑈𝑖

= 𝛽0 + 𝛽1 (log (𝐿𝑖) − log (𝐾𝑖)) + 𝛿 · log (𝐾𝑖) +𝑈𝑖 .

I Generate a new variable 𝐷𝑖 = log (𝐿𝑖) − log (𝐾𝑖).
I Estimate log (𝑌𝑖) = 𝛽0 + 𝛽1𝐷𝑖 + 𝛿 · log (𝐾𝑖) +𝑈𝑖 .
I Test 𝐻0 : 𝛿 = 1 against 𝐻1 : 𝛿 ≠ 1.
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Example
. gen D=lnL-lnK

. regress lnY D lnK

Source | SS df MS Number of obs = 1000
-------------+------------------------------ F( 2, 997) = 321.51

Model | 630.003101 2 315.001551 Prob > F = 0.0000

Residual | 976.803233 997 .979742461 R-squared = 0.3921
-------------+------------------------------ Adj R-squared = 0.3909

Total | 1606.80633 999 1.60841475 Root MSE = .98982

------------------------------------------------------------------------------

lnY | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

D | .4484374 .0356212 12.59 0.000 .3785364 .5183385

lnK | .9152634 .0361088 25.35 0.000 .8444054 .9861213

_cons | -.0195782 .0313531 -0.62 0.532 -.0811039 .0419476
------------------------------------------------------------------------------

I The 95% CI for the coefficient on log (𝐾) in the transformed
mode does not include 1 =⇒ We reject 𝐻0.

I Note that in the original equation 𝛽1 + 𝛽2 = 0.9152634 and√︃
V̂ar

[
𝛽1 + 𝛽2

]
= 0.0361088.
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Multiple restrictions
I Consider the model:

log
(
Wage𝑖

)
= 𝛽0 + 𝛽1Experience𝑖 + 𝛽2Experience2

𝑖 +
+ 𝛽3PrevExperience𝑖 + 𝛽4PrevExperience2

𝑖 + 𝛽5Education𝑖 +𝑈𝑖 ,

where 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 is the experience at current job, and
𝑃𝑟𝑒𝑣𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 is the previous experience.

I Suppose that we want to test the null hypothesis that, after
controlling for the experience at current job and education, the
previous experience has no effect on wage:

𝐻0 : 𝛽3 = 0, 𝛽4 = 0.

I We have two restrictions on the model parameters.
I The alternative hypothesis is that at least one of the coefficients,
𝛽3 or 𝛽4, is different from zero:

𝐻1 : 𝛽3 ≠ 0 or 𝛽4 ≠ 0.
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𝑡-statistics and multiple restrictions

I Let 𝑇3 and 𝑇4 be the 𝑡-statistics associated with the coefficients of
𝑃𝑟𝑒𝑣𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 and PrevExperience2:

𝑇3 =
𝛽3

𝑆𝐸
(
𝛽3
) and 𝑇4 =

𝛽4

𝑆𝐸
(
𝛽4
) .

I We can use 𝑇3 and 𝑇4 to test significance of 𝛽3 and 𝛽4 separately
by using two separate size 𝛼 tests:
I Reject 𝐻0,3 : 𝛽3 = 0 in favor of 𝐻1,3 : 𝛽3 ≠ 0 when

|𝑇3 | > 𝑡𝑛−𝑘−1,1−𝛼/2.
I Reject 𝐻0,4 : 𝛽4 = 0 in favor of 𝐻1,4 : 𝛽4 ≠ 0 when

|𝑇4 | > 𝑡𝑛−𝑘−1,1−𝛼/2.

18 / 40



I Rejecting 𝐻0 : 𝛽3 = 0, 𝛽4 = 0 in favor of 𝐻1 : 𝛽3 ≠ 0 or 𝛽4 ≠ 0
when at least one of the two coefficients is significant at level 𝛼 ,
i.e. when

|𝑇3 | > 𝑡𝑛−𝑘−1,1−𝛼/2 or |𝑇4 | > 𝑡𝑛−𝑘−1,1−𝛼/2,

is not a size 𝛼 test!
I Recall that if 𝐴 and 𝐵 are two sets then (𝐴 ∩ 𝐵) ⊆ 𝐴 and therefore

Pr (𝐴 ∩ 𝐵) ≤ Pr (𝐴) .
I When 𝛽3 = 𝛽4 = 0 :

Pr
(
Reject 𝐻0,3 or 𝐻0,4

)
=

= Pr
[
|𝑇3 | > 𝑡𝑛−𝑘−1,1−𝛼/2 or |𝑇4 | > 𝑡𝑛−𝑘−1,1−𝛼/2

]
= Pr

[
|𝑇3 | > 𝑡𝑛−𝑘−1,1−𝛼/2

]
+ Pr

[
|𝑇4 | > 𝑡𝑛−𝑘−1,1−𝛼/2

]
− Pr

[
|𝑇3 | > 𝑡𝑛−𝑘−1,1−𝛼/2 and |𝑇4 | > 𝑡𝑛−𝑘−1,1−𝛼/2

]
= 𝛼 + 𝛼 − Pr

[
|𝑇3 | > 𝑡𝑛−𝑘−1,1−𝛼/2 and |𝑇4 | > 𝑡𝑛−𝑘−1,1−𝛼/2

]
≥ 𝛼.
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Testing multiple exclusion restrictions

I Consider the model

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 + . . . + 𝛽𝑞𝑋𝑞,𝑖 + 𝛽𝑞+1𝑋𝑞+1,𝑖 + . . . + 𝛽𝑘𝑋𝑘,𝑖 +𝑈𝑖 .

Suppose that we want to test that the first 𝑞 regressors have no
effect on 𝑌 (after controlling for other regressors).

I The null hypothesis has 𝑞 exclusion restrictions:

𝐻0 : 𝛽1 = 0, 𝛽2 = 0, . . . , 𝛽𝑞 = 0.

I The alternative hypothesis is that at least one of the restrictions in
𝐻0 is false:

𝐻1 : 𝛽1 ≠ 0 or 𝛽2 ≠ 0 or . . . or 𝛽𝑞 ≠ 0.
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𝐹-statistic
I The idea of the test is to compare the fit of the unrestricted model with

that of the null-restricted model.
I Let SSR𝑢𝑟 denote the Residual Sum-of-Squares of the unrestricted

model

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 + . . . + 𝛽𝑞𝑋𝑞,𝑖 + 𝛽𝑞+1𝑋𝑞+1,𝑖 + . . . + 𝛽𝑘𝑋𝑘,𝑖 +𝑈𝑖 .

I The restricted model given 𝐻0 : 𝛽1 = 0, . . . , 𝛽𝑞 = 0 is

𝑌𝑖 = 𝛽0 + 𝛽𝑞+1𝑋𝑞+1,𝑖 + . . . + 𝛽𝑘𝑋𝑘,𝑖 +𝑈𝑖 .

I LetSSR𝑟 denote the Residual Sum-of-Squares of the restricted model .
I Consider the following statistic:

𝐹 =
(SSR𝑟 − SSR𝑢𝑟 ) /𝑞
SSR𝑢𝑟/(𝑛 − 𝑘 − 1) .

I Note that 𝑞 = number of restrictions;
I 𝑛 − 𝑘 − 1 = unrestricted residual df, where 𝑘 is the number of

regressors in the unrestricted model.
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𝐹 =
(SSR𝑟 − SSR𝑢𝑟 ) /𝑞
SSR𝑢𝑟/(𝑛 − 𝑘 − 1) .

I Since SSR can only increase when you drop some regressors,

SSR𝑟 − SSR𝑢𝑟 ≥ 0,

and therefore 𝐹 ≥ 0.
I If the null restrictions are true, the excluded variables do not

contribute to explaining 𝑌 (in population), and therefore we
should expect that SSR𝑟 − SSR𝑢𝑟 is small and 𝐹 is close to zero.

I If the null restriction are false, the imposed restriction should
substantially worsen the fit, and we should expect that
SSR𝑟 − SSR𝑢𝑟 is large and 𝐹 is far from zero.

I Thus, we should reject 𝐻0 when 𝐹 > 𝑐 where 𝑐 is some positive
constant.
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𝐹 test

𝐹 =
(SSR𝑟 − SSR𝑢𝑟 ) /𝑞
SSR𝑢𝑟/(𝑛 − 𝑘 − 1) .

I We should reject 𝐻0 when 𝐹 > 𝑐.
I There is a probability that 𝐹 > 𝑐 even when 𝐻0 is true, thus we

need to choose 𝑐 so that Pr [𝐹 > 𝑐 | 𝐻0 is true] = 𝛼.
I It turns out that when 𝐻0 is true, the 𝐹-statistic has 𝐹 distribution

with two parameters: the numerator df (𝑞) and the denominator
df (𝑛 − 𝑘 − 1):

𝐹 ∼ 𝐹𝑞,𝑛−𝑘−1.

I Similarly to the standard normal and 𝑡 distributions, the 𝐹
distribution has been tabulated and its critical values are
available in statistical tables and statistical software such as Stata.

23 / 40



When 𝐻0 is true,

𝐹 =
(SSR𝑟 − SSR𝑢𝑟 ) /𝑞
SSR𝑢𝑟/(𝑛 − 𝑘 − 1) ∼ 𝐹𝑞,𝑛−𝑘−1.

I Let 𝐹𝑞,𝑛−𝑘−1,𝜏 be the 𝜏-quantile of the 𝐹𝑞,𝑛−𝑘−1 distribution.
I A size 𝛼 test 𝐻0 : 𝛽1 = 0, . . . , 𝛽𝑞 = 0 against 𝐻1 : 𝛽1 ≠ 0 or . . .

or 𝛽𝑞 ≠ 0 is

Reject 𝐻0 when 𝐹 > 𝐹𝑞,𝑛−𝑘−1,1−𝛼.

I One can find the 𝑝-value by finding 𝜏 such that 𝐹 = 𝐹𝑞,𝑛−𝑘−1,1−𝜏 .
The 𝑝-value is equal to 𝜏.

24 / 40



𝐹 distribution in Stata

I To compute 𝐹 critical values use

disp invFtail(𝑞, 𝑛 − 𝑘 − 1,𝛼).

I To compute 𝑝-values from 𝐹 distribution use

disp Ftail(𝑞, 𝑛 − 𝑘 − 1, 𝐹).
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Example

I Consider the model:

log
(
Wage𝑖

)
= 𝛽0 + 𝛽1Experience𝑖 + 𝛽2Experience2

𝑖 +
+ 𝛽3PrevExperience𝑖 + 𝛽4PrevExperience2

𝑖 + 𝛽5Education𝑖 +𝑈𝑖 .

I We test

𝐻0 : 𝛽3 = 0, 𝛽4 = 0 against 𝐻1 : 𝛽3 ≠ 0 or 𝛽4 ≠ 0.

I 𝑞 = 2.
I 𝛼 = 0.05.
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Example: the unrestricted model

. regress lnWage Experience Experience2 PrevExperience PrevExperience2 Education

Source | SS df MS Number of obs = 526
-------------+------------------------------ F( 5, 520) = 55.04

Model | 51.3318741 5 10.2663748 Prob > F = 0.0000

Residual | 96.9978773 520 .186534379 R-squared = 0.3461
-------------+------------------------------ Adj R-squared = 0.3398

Total | 148.329751 525 .28253286 Root MSE = .4319

------------------------------------------------------------------------------

lnWage | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

Experience | .0471914 .0068074 6.93 0.000 .0338179 .0605649

Experience2 | -.0008518 .0002472 -3.45 0.001 -.0013374 -.0003662

PrevExperi~e | .0168997 .0047331 3.57 0.000 .0076013 .0261981

PrevExperi~2 | -.0003727 .0001208 -3.09 0.002 -.00061 -.0001354

Education | .0887704 .0072131 12.31 0.000 .0745999 .1029408

_cons | .2368427 .10287 2.30 0.022 .0347509 .4389346
------------------------------------------------------------------------------

I 𝑆𝑆𝑅𝑢𝑟 =96.9978773.
I 𝑛 − 𝑘 − 1 =526-5-1=520.
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Example: the restricted model

. regress lnWage Experience Experience2 Education

Source | SS df MS Number of obs = 526
-------------+------------------------------ F( 3, 522) = 85.49

Model | 48.8668114 3 16.2889371 Prob > F = 0.0000

Residual | 99.46294 522 .190542031 R-squared = 0.3294
-------------+------------------------------ Adj R-squared = 0.3256

Total | 148.329751 525 .28253286 Root MSE = .43651

------------------------------------------------------------------------------

lnWage | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

Experience | .0510784 .0067937 7.52 0.000 .037732 .0644248

Experience2 | -.0009941 .0002463 -4.04 0.000 -.001478 -.0005103

Education | .0852822 .0068978 12.36 0.000 .0717313 .0988331

_cons | .3688491 .0908138 4.06 0.000 .1904437 .5472544
------------------------------------------------------------------------------

I 𝑆𝑆𝑅𝑟 =99.46294.
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Example: 𝐹 statistic and test

I To compute the statistic:

𝐹 =
(SSR𝑟 − SSR𝑢𝑟 ) /𝑞
SSR𝑢𝑟/(𝑛 − 𝑘 − 1) =

(99.46294 − 96.9978773) /2
96.9978773/(526 − 5 − 1) ≈ 6.61.

I The critical value:
. disp invFtail(2,520,0.05)
3.0130572

I The test: 6.61 >3.0130572 and at 5% significance level we reject
𝐻0 that previous experience has no effect on wage.

I The 𝑝-value:
. disp Ftail(2,520,6.61)
.00146284

=⇒We reject 𝐻0 for any 𝛼 > 0.00146284.
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Example: Stata test command

I Instead of running two models, restricted and unrestricted, one
can use the Stata test command after estimation of the
unrestricted model.

I To test that previous experience has no effect:

. test (PrevExperience=0) (PrevExperience2=0)

I The output of this command is:

( 1) PrevExperience = 0
( 2) PrevExperience2 = 0
F( 2, 520) = 6.61
Prob > F = 0.0015
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I To test that the coefficient on previous experience equal to the
coefficient on experience and the coefficient on previous
experience squared is zero:

. test (Experience==PrevExperience2) (PrevExperience2=0)

I The output is:

( 1) Experience - PrevExperience2 = 0
( 2) PrevExperience2 = 0

F( 2, 520) = 31.94
Prob > F = 0.0000
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𝐹 and 𝑅2

I Let 𝑅2
𝑢𝑟 denote the 𝑅2 corresponding to the unrestricted model:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 + . . . + 𝛽𝑞𝑋𝑞,𝑖 + 𝛽𝑞+1𝑋𝑞+1,𝑖 + . . . + 𝛽𝑘𝑋𝑘,𝑖 +𝑈𝑖 .

I Let 𝑅2
𝑟 denote the 𝑅2 corresponding to the restricted model:

𝑌𝑖 = 𝛽0 + 𝛽𝑞+1𝑋𝑞+1,𝑖 + . . . + 𝛽𝑘𝑋𝑘,𝑖 +𝑈𝑖 .

I The two models have the same dependent variable and therefore
the same Total Sum-of-Squares:

𝑆𝑆𝑇 =

𝑛∑︁
𝑖=1

(
𝑌𝑖 −𝑌

)2
= SST𝑢𝑟 = SST𝑟 .
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I In this case, we can write then

𝐹 =
(SSR𝑟 − SSR𝑢𝑟 ) /𝑞
SSR𝑢𝑟/(𝑛 − 𝑘 − 1)

=

(
SSR𝑟

𝑆𝑆𝑇
− SSR𝑢𝑟

𝑆𝑆𝑇

)
/𝑞

SSR𝑢𝑟

𝑆𝑆𝑇
/(𝑛 − 𝑘 − 1)

=

(
1 − 𝑅2

𝑟 −
(
1 − 𝑅2

𝑢𝑟

) )
/𝑞(

1 − 𝑅2
𝑢𝑟

)
/(𝑛 − 𝑘 − 1)

=

(
𝑅2
𝑢𝑟 − 𝑅2

𝑟

)
/𝑞(

1 − 𝑅2
𝑢𝑟

)
/(𝑛 − 𝑘 − 1)

.
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𝐹 test: more examples

I Suppose that you want to test 𝐻0 : 𝛽1 = 1 against 𝐻1 : 𝛽1 ≠ 1 in

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 + 𝛽2𝑋2,𝑖 + . . . + 𝛽𝑘𝑋𝑘,𝑖 +𝑈𝑖 .

I The restricted model is

𝑌𝑖 = 𝛽0 + 𝑋1,𝑖 + 𝛽2𝑋2,𝑖 + . . . + 𝛽𝑘𝑋𝑘,𝑖 +𝑈𝑖 ,

or
𝑌𝑖 − 𝑋1,𝑖 = 𝛽0 + 𝛽2𝑋2,𝑖 + . . . + 𝛽𝑘𝑋𝑘,𝑖 +𝑈𝑖 .

1. Generate a new dependent variable 𝑌 ∗
𝑖
= 𝑌𝑖 − 𝑋1,𝑖 .

2. Regress 𝑌 ∗ against a constant, 𝑋2, . . . , 𝑋𝑘 to obtain SSR𝑟 .
3. Estimate the unrestricted model to obtain SSR𝑢𝑟 .
4. Compute 𝐹 =

(SSR𝑟−SSR𝑢𝑟 )/1
SSR𝑢𝑟 /(𝑛−𝑘−1) .
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I Suppose that you want to test 𝐻0 : 𝛽1 + 𝛽2 = 1 against
𝐻1 : 𝛽1 + 𝛽2 ≠ 1 in

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 + 𝛽2𝑋2,𝑖 + . . . + 𝛽𝑘𝑋𝑘,𝑖 +𝑈𝑖 .

I The restricted model is

𝑌𝑖 = 𝛽0 + (1 − 𝛽2) 𝑋1,𝑖 + 𝛽2𝑋2,𝑖 + . . . + 𝛽𝑘𝑋𝑘,𝑖 +𝑈𝑖 ,

or
𝑌𝑖 − 𝑋1,𝑖 = 𝛽0 + 𝛽2

(
𝑋2,𝑖 − 𝑋1,𝑖

)
+ . . . + 𝛽𝑘𝑋𝑘,𝑖 +𝑈𝑖 .

1. Generate a new dependent variable 𝑌 ∗
𝑖
= 𝑌𝑖 − 𝑋1,𝑖 .

2. Generate a new regressor 𝑋∗
2 = 𝑋2,𝑖 − 𝑋1,𝑖 .

3. Regress 𝑌 ∗ against a constant, 𝑋∗
2 , 𝑋3, . . . , 𝑋𝑘 to obtain SSR𝑟 .

4. Estimate the unrestricted model to obtain SSR𝑢𝑟 .
5. Compute 𝐹 =

(SSR𝑟−SSR𝑢𝑟 )/1
SSR𝑢𝑟 /(𝑛−𝑘−1) .
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Relationship between 𝐹 and 𝑡 statistics

I The 𝐹 statistic can also be used for testing a single restriction.
I In the case of a single restriction, the 𝐹 test and 𝑡 test lead to the

same outcome because

𝑡2𝑛−𝑘−1 = 𝐹1,𝑛−𝑘−1.
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Test of model significance
I Consider the model

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 + . . . + 𝛽𝑘𝑋𝑘,𝑖 +𝑈𝑖 .

I Suppose that you want to test that none of the regressors explain
𝑌 :

𝐻0 : 𝛽1 = 𝛽2 = . . . = 𝛽𝑘 = 0 (𝑘 restrictions) against
𝐻1 : 𝛽 𝑗 ≠ 0 for some 𝑗 = 1, . . . , 𝑘 .

I The restricted model is given by

𝑌𝑖 = 𝛽0 +𝑈𝑖 ,

and since 𝛽0 = 𝑌 in this model,

SSR𝑟 =

𝑛∑︁
𝑖=1

(
𝑌𝑖 −𝑌

)2
= 𝑆𝑆𝑇 and SSR𝑢𝑟 = 𝑆𝑆𝑅.
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I The 𝐹 statistic for model significance test is

𝐹 =
(SSR𝑟 − SSR𝑢𝑟 ) /𝑘
SSR𝑢𝑟/(𝑛 − 𝑘 − 1)

=
(𝑆𝑆𝑇 − 𝑆𝑆𝑅) /𝑘
𝑆𝑆𝑅/(𝑛 − 𝑘 − 1)

=
𝑆𝑆𝐸/𝑘

𝑆𝑆𝑅/(𝑛 − 𝑘 − 1)

=
𝑅2/𝑘(

1 − 𝑅2) /(𝑛 − 𝑘 − 1)
.
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I The 𝐹 statistic for the model significance test and its 𝑝-value is
reported by Stata as in the top part of the regression output.

Source | SS df MS Number of obs = 526
-------------+------------------------------ F( 5, 520) = 55.04

Model | 51.3318741 5 10.2663748 Prob > F = 0.0000

Residual | 96.9978773 520 .186534379 R-squared = 0.3461
-------------+------------------------------ Adj R-squared = 0.3398

Total | 148.329751 525 .28253286 Root MSE = .4319
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Model selection
I If a subset of the coefficients in the linear model

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 + . . . + 𝛽𝑘𝑋𝑘,𝑖 +𝑈𝑖

are exactly zero, we wish to find the smallest sub-model
consisting of only explanatory variables with nonzero
coefficients.

I Estimate the full model with all variables. Let 𝑇𝑗 = 𝛽 𝑗/𝑆𝐸
(
𝛽 𝑗

)
denote the 𝑡-statistic for 𝐻0 : 𝛽 𝑗 = 0 versus 𝐻1 : 𝛽 𝑗 ≠ 0.

I Order 𝑇1, ...,𝑇𝑘 in absolute value:��𝑇(1) �� ≥ ��𝑇(2) �� ≥ · · · ≥
��𝑇(𝑘) �� .

I Let 𝑗 be the value of 𝑗 that minimizes 𝑅𝑆𝑆 ( 𝑗) + 𝑗 · 𝑠2log (𝑛),
where 𝑅𝑆𝑆 ( 𝑗) is the residual sum of squares from the model with
𝑗 variables corresponding to the 𝑗 largest absolute 𝑡-statistics.

I The selected model is the model with 𝑗 variables corresponding
to the 𝑗 largest absolute 𝑡-statistics.

I When 𝑛 is large, with high probability, this selected model is the
same as the smallest sub-model with only nonzero coefficients.
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