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Strong exogeneity and the conditional expectation function
(CEF)

▶ Consider the linear regression model

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 +𝑈𝑖 .

▶ When the errors are strongly exogenous, i.e. E [𝑈𝑖 | 𝑋𝑖] = 0, the
linear regression model defines the CEF of 𝑌 conditional on 𝑋:

𝐶𝐸𝐹𝑌 (𝑋𝑖) = E [𝑌𝑖 | 𝑋𝑖]
= E [𝛽0 + 𝛽1𝑋𝑖 +𝑈𝑖 | 𝑋𝑖]
= 𝛽0 + 𝛽1𝑋𝑖 + E [𝑈𝑖 | 𝑋𝑖]
= 𝛽0 + 𝛽1𝑋𝑖
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Weak exogeneity

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 +𝑈𝑖 ,
E [𝑈𝑖] = 0

▶ Suppose the errors are only weakly exogenous:

E [𝑈𝑖𝑋𝑖] = 0.

▶ In this case,
𝐶𝐸𝐹𝑌 (𝑋𝑖) ≠ 𝛽0 + 𝛽1𝑋𝑖 .

▶ Question: What does the econometrician estimates when he runs
a linear regression and the regressors are not strongly exogenous?
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Linear regression as a misspecified CEF

▶ Suppose that
E [𝑌𝑖 | 𝑋𝑖] = 𝑔 (𝑋𝑖) ,

where 𝑔 is some unknown nonlinear function. Thus, the true
CEF is 𝑔 (𝑋𝑖) ≠ 𝛽0 + 𝛽1𝑋𝑖 .

▶ Define
𝑉𝑖 = 𝑌𝑖 − E [𝑌𝑖 | 𝑋𝑖] ,

so we can write the true model as

𝑌𝑖 = 𝑔 (𝑋𝑖) +𝑉𝑖 ,
E [𝑉𝑖 | 𝑋𝑖] = 0.
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▶ Write

𝑌𝑖 = 𝑔 (𝑋𝑖) +𝑉𝑖
= 𝛽0 + 𝛽1𝑋𝑖−𝛽0 − 𝛽1𝑋𝑖 + 𝑔 (𝑋𝑖) +𝑉𝑖

or
𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖+𝑈𝑖 ,

where
𝑈𝑖= 𝑉𝑖 + 𝑔 (𝑋𝑖) − 𝛽0 − 𝛽1𝑋𝑖 .

▶ Can we find 𝛽0 and 𝛽1 so that E [𝑈𝑖] = 0 and E [𝑋𝑖𝑈𝑖] = 0? If
yes, how can we interpret such 𝛽0 and 𝛽1?
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𝑈𝑖 = 𝑉𝑖 + 𝑔 (𝑋𝑖) − 𝛽0 − 𝛽1𝑋𝑖 .

▶ Note that

E [𝑈𝑖] = E [𝑉𝑖 + 𝑔 (𝑋𝑖) − 𝛽0 − 𝛽1𝑋𝑖]
= E [𝑉𝑖] + E [𝑔 (𝑋𝑖) − 𝛽0 − 𝛽1𝑋𝑖]
= E [𝑔 (𝑋𝑖) − 𝛽0 − 𝛽1𝑋𝑖] ,

and

E [𝑈𝑖𝑋𝑖] = E [(𝑉𝑖 + 𝑔 (𝑋𝑖) − 𝛽0 − 𝛽1𝑋𝑖) 𝑋𝑖]
= E [𝑉𝑖𝑋𝑖] + E [(𝑔 (𝑋𝑖) − 𝛽0 − 𝛽1𝑋𝑖) 𝑋𝑖]
= E [(𝑔 (𝑋𝑖) − 𝛽0 − 𝛽1𝑋𝑖) 𝑋𝑖] .

▶ Thus, to have E [𝑈𝑖] = E [𝑈𝑖𝑋𝑖] = 0, we need to find 𝛽0 and 𝛽1
such that

E [𝑔 (𝑋𝑖) − 𝛽0 − 𝛽1𝑋𝑖] = 0
E [(𝑔 (𝑋𝑖) − 𝛽0 − 𝛽1𝑋𝑖) 𝑋𝑖] = 0.
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Linear approximation of the CEF

▶ Consider the following approximation problem:

min
𝑏0,𝑏1

E
[
(𝑔 (𝑋𝑖) − 𝑏0 − 𝑏1𝑋𝑖)2] .

▶ We are approximating the CEF by linear functions.
▶ Among the linear functions, we are looking for the best linear

approximation in the mean squared error (MSE) sense.
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min
𝑏0,𝑏1

𝑀𝑆𝐸 (𝑏0, 𝑏1) ,

𝑀𝑆𝐸 (𝑏0, 𝑏1) = E
[
(𝑔 (𝑋𝑖) − 𝑏0 − 𝑏1𝑋𝑖)2] .

▶ Let 𝛽0 and 𝛽1 denote the solution:
(𝛽0, 𝛽1) = arg min𝑏0,𝑏1 𝑀𝑆𝐸 (𝑏0, 𝑏1) .

▶ The first-order conditions are:

𝜕𝑀𝑆𝐸 (𝛽0, 𝛽1)
𝜕𝑏0

= −2 · E [𝑔 (𝑋𝑖) − 𝛽0 − 𝛽1𝑋𝑖] = 0.

𝜕𝑀𝑆𝐸 (𝛽0, 𝛽1)
𝜕𝑏1

= −2 · E [(𝑔 (𝑋𝑖) − 𝛽0 − 𝛽1𝑋𝑖) 𝑋𝑖] = 0.
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Linear regression as the best linear approximation of the
CEF

▶ We have

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 +𝑈𝑖 ,
𝑈𝑖 = 𝑉𝑖 + 𝑔 (𝑋𝑖) − 𝛽0 − 𝛽1𝑋𝑖 .

▶ With (𝛽0, 𝛽1) = arg min𝑏0,𝑏1 E
[
(𝑔 (𝑋𝑖) − 𝑏0 − 𝑏1𝑋𝑖)2] ,

E [𝑈𝑖] = 0 and E [𝑈𝑖𝑋𝑖] = 0.

▶ Thus, the linear regression model gives us the best linear
approximation of the CEF (in the MSE sense).
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Misspecification and heteroskedasticity

▶ We have

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 +𝑈𝑖 ,
𝑈𝑖 = 𝑉𝑖 + 𝑔 (𝑋𝑖) − 𝛽0 − 𝛽1𝑋𝑖 .

▶ Suppose that the "true" error 𝑉𝑖 is homoskedastic:
E
[
𝑉2
𝑖
| 𝑋𝑖

]
= 𝜎2

𝑉
for all 𝑋𝑖 .

▶ 𝑈𝑖 is heteroskedastic if 𝑔 (𝑋𝑖) ≠ 𝛽0 + 𝛽1𝑋𝑖:

E
[
𝑈2
𝑖 | 𝑋𝑖

]
= E

[
(𝑉𝑖 + 𝑔 (𝑋𝑖) − 𝛽0 − 𝛽1𝑋𝑖)2 | 𝑋𝑖

]
= E

[
𝑉2
𝑖 + (𝑔 (𝑋𝑖) − 𝛽0 − 𝛽1𝑋𝑖)2 +

+2𝑉𝑖 (𝑔 (𝑋𝑖) − 𝛽0 − 𝛽1𝑋𝑖) | 𝑋𝑖]
= 𝜎2

𝑉 + (𝑔 (𝑋𝑖) − 𝛽0 − 𝛽1𝑋𝑖)2 .
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