Introductory Econometrics

Lecture 18: The asymptotic variance of OLS and heteroskedasticity

Instructor: Ma, Jun

Renmin University of China

November 17, 2021

Asymptotic normality

► In the previous lecture, we showed that when the data are iid and the regressors are exogenous:

$$Y_i = \beta_0 + \beta_1 X_i + U_i,$$

$$E[U_i] = E[X_i U_i] = 0,$$

the OLS estimator of β_1 is asymptotically normal:

$$\sqrt{n} \left(\hat{\beta}_{1,n} - \beta_1 \right) \to_d \mathbf{N} \left(0, V \right),$$

$$V = \frac{\mathbf{E} \left[(X_i - \mathbf{E} \left[X_i \right])^2 U_i^2 \right]}{(\mathbf{Var} \left[X_i \right])^2}.$$

► For the purpose of hypothesis testing, we need to obtain a consistent estimator of the asymptotic variance *V*:

$$\hat{V}_n \to_p V$$
.

Homoskedastic errors

Let's assume that the errors are homoskedastic:

$$E[U_i^2 \mid X_i] = \sigma^2$$
 for all X_i 's.

► In this case, the asymptotic variance can be simplified using the Law of Iterated Expectation:

$$E\left[(X_i - E\left[X_i\right])^2 U_i^2\right] = E\left[E\left[(X_i - E\left[X_i\right])^2 U_i^2 \mid X_i\right]\right]$$

$$= E\left[(X_i - E\left[X_i\right])^2 E\left[U_i^2 \mid X_i\right]\right]$$

$$= E\left[(X_i - E\left[X_i\right])^2 \sigma^2\right]$$

$$= \sigma^2 E\left[(X_i - E\left[X_i\right])^2\right] = \sigma^2 Var\left[X_i\right].$$

► Thus, when the errors are homoskedastic with $E\left[U_i^2\right] = \sigma^2$,

$$V = \frac{\mathrm{E}\left[\left(X_i - \mathrm{E}\left[X_i\right]\right)^2 U_i^2\right]}{\left(\mathrm{Var}\left[X_i\right]\right)^2} = \frac{\sigma^2 \mathrm{Var}\left[X_i\right]}{\left(\mathrm{Var}\left[X_i\right]\right)^2} = \frac{\sigma^2}{\mathrm{Var}\left[X_i\right]}.$$

- ▶ Let $\hat{U}_i = Y_i \hat{\beta}_{0,n} \hat{\beta}_{1,n} X_i$, where $\hat{\beta}_{0,n}$ and $\hat{\beta}_{1,n}$ are the OLS estimators of β_0 and β_1 .
- ► A consistent estimator for the asymptotic variance can be constructed by using the Method of Moments.

$$\hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n \hat{U}_i^2,$$

$$\widehat{\text{Var}}[X_i] = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2$$
, and

$$\hat{V}_n = \frac{\hat{\sigma}_n^2}{\frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2}.$$

$$\hat{V}_n = \frac{\hat{\sigma}_n^2}{\frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2}, \quad \hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n \hat{U}_i^2, \quad \hat{U}_i = Y_i - \hat{\beta}_{0,n} - \hat{\beta}_{1,n} X_i.$$

▶ When proving the consistency of OLS, we showed that

$$\frac{1}{n}\sum_{i=1}^{n} (X_i - \bar{X}_n)^2 \to_p \operatorname{Var}[X_i],$$

and to establish $\hat{V}_n \to_p V$, we need to show that $\hat{\sigma}_n^2 \to_p \sigma^2$.

▶ Note that the LLN cannot be applied directly to

$$\frac{1}{n}\sum_{i=1}^{n}\hat{U}_{i}^{2}$$

because \hat{U}_i 's are not iid: they are dependent through $\hat{\beta}_{0,n}$ and $\hat{\beta}_{1,n}$.

Proof of $\hat{\sigma}_n^2 \to_p \sigma_n^2$

First, write

$$\hat{U}_{i} = Y_{i} - \hat{\beta}_{0,n} - \hat{\beta}_{1,n} X_{i}$$

$$= (\beta_{0} + \beta_{1} X_{i} + U_{i}) - \hat{\beta}_{0,n} - \hat{\beta}_{1,n} X_{i}$$

$$= U_{i} - (\hat{\beta}_{0,n} - \beta_{0}) - (\hat{\beta}_{1,n} - \beta_{1}) X_{i}$$

► Now,

$$\hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n \hat{U}_i^2 = \frac{1}{n} \sum_{i=1}^n \left(U_i - (\hat{\beta}_{0,n} - \beta_0) - (\hat{\beta}_{1,n} - \beta_1) X_i \right)^2.$$

► We have

$$\hat{\sigma}_{n}^{2} = \frac{1}{n} \sum_{i=1}^{n} (U_{i} - (\hat{\beta}_{0,n} - \beta_{0}) - (\hat{\beta}_{1,n} - \beta_{1}) X_{i})^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} U_{i}^{2} + (\hat{\beta}_{0,n} - \beta_{0})^{2} + (\hat{\beta}_{1,n} - \beta_{1})^{2} \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}$$

$$-2 (\hat{\beta}_{0,n} - \beta_{0}) \frac{1}{n} \sum_{i=1}^{n} U_{i} - 2 (\hat{\beta}_{1,n} - \beta_{1}) \frac{1}{n} \sum_{i=1}^{n} U_{i} X_{i}$$

$$+2 (\hat{\beta}_{0,n} - \beta_{0}) (\hat{\beta}_{1,n} - \beta_{1}) \frac{1}{n} \sum_{i=1}^{n} X_{i}.$$

▶ By the LLN,

$$\frac{1}{n}\sum_{i=1}^{n}U_{i}^{2}\rightarrow_{p} \mathrm{E}\left[U_{i}^{2}\right]=\sigma^{2}.$$

▶ Because $\hat{\beta}_{0,n}$ and $\hat{\beta}_{1,n}$ are consistent,

$$\hat{\beta}_{0,n} - \beta_0 \rightarrow_p 0$$
 and $\hat{\beta}_{1,n} - \beta_1 \rightarrow_p 0$.

Homoskedastic errors

► Thus, when the errors are homoskedastic,

$$\hat{V}_n = \frac{\hat{\sigma}_n^2}{\frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2}, \text{ with } \hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n \hat{U}_i^2,$$

is a consistent estimator of $V = \frac{\sigma^2}{\text{Var}[X_i]}$.

► Note that

$$s^2 = \frac{1}{n-2} \sum_{i=1}^{n} \hat{U}_i^2 \to_p \sigma^2,$$

and therefore

$$\hat{V}_n = \frac{s^2}{\frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2}$$

is also a consistent estimator of $V = \frac{\sigma^2}{\text{Var}[X_i]}$.

► This version has an advantage over the one with $\hat{\sigma}_n^2$: in addition to being consistent, s^2 is also an unbiased estimator of σ^2 if the regressors are strongly exogenous.

Homoskedastic errors: Asymptotic approximation

► Recall that $\sqrt{n} (\hat{\beta}_{1,n} - \beta_1) \rightarrow_d N(0, V)$ is used as the following approximation:

$$\hat{\beta}_{1,n} \stackrel{a}{\sim} N\left(\beta_1, \frac{V}{n}\right),$$

where $\stackrel{a}{\sim}$ denotes approximately in large samples. Thus, the variance of $\hat{\beta}_{1,n}$ can be taken as approximately V/n.

Note that, with $\hat{V}_n = \frac{s^2}{\frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2}$ we have

$$\frac{\hat{V}_n}{n} = \frac{s^2}{\frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2} \frac{1}{n} = \frac{s^2}{\sum_{i=1}^n (X_i - \bar{X}_n)^2}.$$

$$\frac{\hat{V}_n}{n} = \frac{s^2}{\sum_{i=1}^n \left(X_i - \bar{X}_n\right)^2}$$

► Thus, in the case of homoskedastic errors we have the following asymptotic approximation:

$$\hat{\beta}_{1,n} \stackrel{a}{\sim} N\left(\beta_1, \frac{s^2}{\sum_{i=1}^n (X_i - \bar{X}_n)^2}\right).$$

► In finite samples, we have the same result exactly, when the regressors are strongly exogenous and the errors are normal.

Asymptotic *T*-test

- ► Consider testing $H_0: \beta_1 = \beta_{1,0}$ vs $H_1: \beta_1 \neq \beta_{1,0}$.
- ► Consider the behavior of *T* statistic under $H_0: \beta_1 = \beta_{1,0}$. Since

$$\sqrt{n} \left(\hat{\beta}_{1,n} - \beta_1 \right) \rightarrow_d N(0, V) \text{ and } \hat{V}_n \rightarrow_p V,$$

we have that

$$T = \frac{\left(\hat{\beta}_{1,n} - \beta_{1,0}\right)}{\sqrt{\hat{V}_n/n}} = \frac{\sqrt{n}\left(\hat{\beta}_{1,n} - \beta_{1,0}\right)}{\sqrt{\hat{V}_n}}$$

$$\stackrel{\text{H}_0}{=} \frac{\sqrt{n}\left(\hat{\beta}_{1,n} - \beta_1\right)}{\sqrt{\hat{V}_n}}$$

$$\rightarrow_d \frac{N\left(0,V\right)}{\sqrt{V}} =_d N\left(0,1\right).$$

• We have that under $H_0: \beta_1 = \beta_{1,0}$,

$$T = \frac{\left(\hat{\beta}_{1,n} - \beta_{1,0}\right)}{\sqrt{\hat{V}_n/n}} \to_d N(0,1),$$

provided that $\hat{V}_n \to_p V$ (the asymptotic variance of $\hat{\beta}_{1,n}$).

An asymptotic size α test rejects $H_0: \beta_1 = \beta_{1,0}$ against $H_1: \beta_1 \neq \beta_{1,0}$ when

$$|T|>z_{1-\alpha/2},$$

where $z_{1-\alpha/2}$ is a standard normal critical value.

► Asymptotically, the variance of the OLS estimator is known - we behave as if the variance was known.

Heteroskedastic errors

- ▶ In general, the errors are heteroskedastic: $E\left[U_i^2 \mid X_i\right]$ is not constant and changes with X_i .
- ► In this case, $\hat{V}_n = \frac{s^2}{\frac{1}{n} \sum_{i=1}^n (X_i \bar{X}_n)^2}$ is not a consistent estimator of the asymptotic variance $V = \frac{\mathbb{E}[(X_i \mathbb{E}[X_i])^2 U_i^2]}{(\text{Var}[X_i])^2}$:

$$\frac{s^{2}}{\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\bar{X}_{n})^{2}} \rightarrow_{p} \frac{\operatorname{E}\left[U_{i}^{2}\right]}{\operatorname{Var}\left[X_{i}\right]} = \frac{\left(\operatorname{E}\left[(X_{i}-\operatorname{E}\left[X_{i}\right])^{2}\right]\right)\left(\operatorname{E}\left[U_{i}^{2}\right]\right)}{\left(\operatorname{Var}\left[X_{i}\right]\right)^{2}}$$

$$\neq \frac{\operatorname{E}\left[(X_{i}-\operatorname{E}\left[X_{i}\right])^{2}U_{i}^{2}\right]}{\left(\operatorname{Var}\left[X_{i}\right]\right)^{2}}.$$

A heteroskedasticity consistent (HC) estimator of the asymptotic variance of OLS

► In the case of heteroskedastic errors, a consistent estimator of $V = \frac{E[(X_i - E[X_i])^2 U_i^2]}{(Var[X_i])^2}$ can be constructed as follows:

$$\hat{V}_{n}^{HC} = \frac{\frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X}_{n})^{2} \hat{U}_{i}^{2}}{\left(\frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X}_{n})^{2}\right)^{2}}.$$

- ▶ One can show that $\hat{V}_n^{HC} \rightarrow_p V$ when the errors are heteroskedastic or homoskedastic.
- ► We have the following asymptotic approximation:

$$\hat{\beta}_{1,n} \stackrel{a}{\sim} N\left(\beta_1, \frac{\hat{V}_n^{HC}}{n}\right),$$

and the standard errors can be computed as $SE(\hat{\beta}_{1,n}) = \sqrt{\hat{V}_n^{HC}/n}$.

HC variance estimation in Stata

- ► In Stata, the HC estimator of standard errors can be obtained by adding the option robust to the regression command:
 - . regress liver alcohol, robust

Robust										
liver	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]				
alcohol	3.586388	.550515	6.51	0.000	2.434147	4.73863				
_cons	10.85482	2.119993	5.12	0.000	6.417625	15.29202				

- Compare with the non-HC standard errors based on \hat{V}_n :
 - . regress liver alcohol

	liver	Coef.	Std.	Err.	t	P> t	[95%	Conf.	Interval]
		3.586388							
_cons	10.85	482 2.8024	808	3.87	0.001	4.989	313	16.720	033