Introductory Econometrics

Lecture 3: Review of Conditional Distribution and Expectation

Instructor: Ma, Jun

Renmin University of China

September 8, 2021

Conditional PMF

► Conditional PMF (when (Y, X) are discrete): If $Pr[X = x_1] \neq 0$,

$$p_j^{Y|X=x_1} = \Pr \left[Y = y_j \mid X = x_1 \right]$$

$$= \frac{\Pr \left[Y = y_j, X = x_1 \right]}{\Pr \left[X = x_1 \right]}$$

$$= p_{1,j}/p_1^X.$$

► If independent:

$$Pr[Y = y \mid X = x] = \frac{Pr[X = x, Y = y]}{Pr[X = x]}$$
$$= \frac{Pr[X = x]Pr[Y = y]}{Pr[X = x]}$$
$$= Pr[Y = y].$$

Conditional PDF

- Conditional PDF (when (Y, X) are continuous): $f_{Y|X=x}(y \mid x) = f_{X,Y}(x, y) / f_X(x)$.
- ▶ If *X* and *Y* are independent, $f_{Y|X}(y \mid x) = f_Y(y)$ for all *x*.

Randomness

▶ Suppose you know that X = x. You can update your expectation of Y by conditional expectation. We define conditional expectationfrom conditional PMF and PDF:

$$E[Y \mid X = x] = \sum_{i} y_{i} Pr[Y = y_{i} \mid X = x] \text{ (discrete)}$$

$$E[Y \mid X = x] = \int y f_{Y|X}(y \mid x) dy \text{ (continuous)}.$$

 $E[Y \mid X = x]$ is a constant.

Suppose that the conditional distribution of *Y* given X = x is exponential (x), i.e. $f_{Y|X}(y \mid x) = x \cdot \exp(-xy)$, then

$$E[Y \mid X = x] = \int_0^\infty y f_{Y|X}(y \mid x) dy = \int_0^\infty y x \exp(-xy) dy = \frac{1}{x}.$$

Conditional expectations as random variables

- ▶ A conditional expectation $E[Y \mid X = x]$ is a number not a random variable. $E[Y \mid X = x]$ is not random, not a function of Y. It is a function of the observed "realized" value x of the random variable X.
- ▶ We denote this function by g(x) = E[Y | X = x]. Notice that g is an ordinary function of x, which is just a number.
- ▶ g(X) is a random variable. If denoting $E[Y \mid X] = g(X)$, $E[Y \mid X]$ is a random variable and a function of X (Uncertainty about X has not been realized yet):

$$\begin{split} & \operatorname{E}\left[Y\mid X\right] &= \sum_{i} y_{i} \operatorname{Pr}\left[Y = y_{i}\mid X\right] = g\left(X\right) \\ & \operatorname{E}\left[Y\mid X\right] &= \int y f_{Y\mid X}\left(y\mid X\right) \mathrm{d}y = g\left(X\right). \end{split}$$

Properties of conditional expectations

Conditional expectations satisfies all properties of unconditional expectation. E.g.

$$E[Y + Z | X] = E[Y | X] + E[Z | X].$$

► Once you condition on *X*, you can treat any function of *X* as a constant:

$$\mathrm{E}\left[h_{1}\left(X\right)+h_{2}\left(X\right)Y\mid X\right]=h_{1}\left(X\right)+h_{2}\left(X\right)\mathrm{E}\left[Y\mid X\right],$$
 for any functions h_{1} and h_{2} .

► Law of Iterated Expectation (LIE):

$$E[E[Y \mid X]] = E[Y],$$

$$E[E[Y \mid X, Z] \mid X] = E[Y \mid X]$$

$$E[E[Y \mid X] \mid X, Z] = E[Y \mid X].$$

► Mean independence: *Y* and *X* are mean independent if

$$E[Y \mid X] = E[Y] = constant.$$

Relationship between different concepts of independence

$$X$$
 and Y are independent \downarrow

$$E[Y \mid X] = \text{constant (mean independence)}$$

$$\downarrow$$

$$Cov[X, Y] = 0 \text{ (uncorrelatedness)}$$

Proof of LIE

► If *X* and *Y* are continuous,

$$E[E[Y \mid X]] = \int E[Y \mid X = x] f_X(x) dx$$

$$= \int \left(\int y f_{Y|X}(y \mid x) dy \right) f_X(x) dx$$

$$= \int \int y f_{X,Y}(x, y) dy dx$$

$$= \int y f_Y(y) dy$$

$$= E[Y].$$

- ► The same is true if *X* and *Y* are discrete. We replace integrals by sums.
- ► The same is true if one of *X* and *Y* is discrete and the other is continuous.

Conditional variance

► Conditional variance is like variance, but defined by replacing ordinary expectation by conditional expectation:

$$Var[Y | X] = E[(Y - E[Y | X])^{2} | X]$$
$$= E[Y^{2} | X] - (E[Y | X])^{2}.$$

► Similarly, we define conditional covariance between *X* and *Y*, conditional on *Z*:

$$Cov [X, Y \mid Z] = E [(X - E [X \mid Z]) (Y - E [Y \mid Z]) \mid Z]$$

= E [XY \cong Z] - E [X \cong Z] E [Y \cong Z].

Iterated variance

► We can calculate:

$$Var[Y] = E[(Y - E[Y])^{2}]$$

$$= E[(Y - E[Y | X] + E[Y | X] - E[Y])^{2}]$$

$$= E[(Y - E[Y | X])^{2}] + E[(E[Y | X] - E[Y])^{2}]$$

$$+ 2E[(Y - E[Y | X]) (E[Y | X] - E[Y])].$$

► By LIE,

$$E[(Y - E[Y \mid X])^{2}] = E[E[(Y - E[Y \mid X])^{2} \mid X]]$$
$$= E[Var[Y \mid X]].$$

► By definition of variance,

$$E[(E[Y | X] - E[Y])^2] = Var[E[Y | X]],$$

since $E[E[Y \mid X]] = E[Y]$.

Iterated variance

► We can show

$$\mathrm{E}\left[\left(Y-\mathrm{E}\left[Y\mid X\right]\right)\left(\mathrm{E}\left[Y\mid X\right]-\mathrm{E}\left[Y\right]\right)\right]=0.$$

► In summary, we have

$$\operatorname{Var}[Y] = \operatorname{E}[\operatorname{Var}[Y \mid X]] + \operatorname{Var}[\operatorname{E}[Y \mid X]].$$

Bivariate normal distributions

► *X* and *Y* have a bivariate normal distribution if their joint PDF is given by:

$$f(x,y) = \frac{1}{2\pi\sqrt{(1-\rho)^2 \sigma_X^2 \sigma_Y^2}} \exp\left[-\frac{1}{2(1-\rho)^2} \left(\frac{(x-\mu_X)^2}{\sigma_X^2} + \frac{(y-\mu_Y)^2}{\sigma_Y^2} - 2\rho \frac{(x-\mu_X)(y-\mu_Y)}{\sigma_X \sigma_Y}\right)\right],$$

$$\mu_X = \mathrm{E}[X]$$
, $\mu_Y = \mathrm{E}[Y]$, $\sigma_X^2 = \mathrm{Var}[X]$, $\sigma_Y^2 = \mathrm{Var}[Y]$, and $\rho = \mathrm{Corr}[X,Y]$.

Properties of bivariate normal distributions

► If *X* and *Y* have a bivariate normal distribution:

$$a + bX + cY \sim N(\mathbb{E}[a + bX + cY], \operatorname{Var}[a + bX + cY])$$

= $N(a + b\mu_X + c\mu_Y, b^2\sigma_X^2 + c^2\sigma_Y^2 + 2bc\rho\sigma_X\sigma_Y).$

- $ightharpoonup \operatorname{Cov}[X,Y] = 0 \Longrightarrow X \text{ and } Y \text{ are independent.}$
- $\blacktriangleright \ \mathrm{E}\left[Y\mid X\right] = \mu_Y + \frac{\mathrm{Cov}[X,Y]}{\sigma_v^2}\left(X \mu_X\right).$
- ► Can be generalized to more than two random variables (multivariate normal).