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Conditional PMF

I Conditional PMF (when (Y , X) are discrete): If Pr [X = x1] , 0,

pY |X=x1
j = Pr

[
Y = yj | X = x1

]
=

Pr
[
Y = yj , X = x1

]
Pr [X = x1]

= p1,j/pX
1 .

I If independent:

Pr [Y = y | X = x] =
Pr [X = x,Y = y]

Pr [X = x]

=
Pr [X = x]Pr [Y = y]

Pr [X = x]
= Pr [Y = y] .
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Conditional PDF

I Conditional PDF (when (Y , X) are continuous):
fY |X=x (y | x) = fX,Y (x, y) / fX (x).

I If X and Y are independent, fY |X (y | x) = fY (y) for all x.
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Randomness

I Suppose you know that X = x. You can update your expectation
of Y by conditional expectation. We define conditional
expectationfrom conditional PMF and PDF:

E [Y | X = x] =
∑
i

yiPr [Y = yi | X = x] (discrete)

E [Y | X = x] =
∫

y fY |X (y | x) dy (continuous).

E [Y | X = x] is a constant.
I Suppose that the conditional distribution of Y given X = x is

exponential (x), i.e. fY |X (y | x) = x · exp (−xy), then

E [Y | X = x] =
∫ ∞

0
y fY |X (y | x) dy =

∫ ∞

0
yxexp (−xy) dy =

1
x

.
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Conditional expectations as random variables

I A conditional expectation E [Y | X = x] is a number not a
random variable. E [Y | X = x] is not random, not a function of
Y . It is a function of the observed “realized” value x of the
random variable X .

I We denote this function by g (x) = E [Y | X = x]. Notice that g is
an ordinary function of x, which is just a number.

I g (X) is a random variable. If denoting E [Y | X] = g (X),
E [Y | X] is a random variable and a function of X (Uncertainty
about X has not been realized yet):

E [Y | X] =
∑
i

yiPr [Y = yi | X] = g (X)

E [Y | X] =
∫

y fY |X (y | X) dy = g (X) .
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Properties of conditional expectations
I Conditional expectations satisfies all properties of unconditional

expectation. E.g.

E [Y + Z | X] = E [Y | X] + E [Z | X] .

I Once you condition on X , you can treat any function of X as a
constant:

E [h1 (X) + h2 (X)Y | X] = h1 (X) + h2 (X)E [Y | X] ,

for any functions h1 and h2.
I Law of Iterated Expectation (LIE):

E [E [Y | X]] = E [Y ] ,
E [E [Y | X , Z] | X] = E [Y | X]

E [E [Y | X] | X , Z] = E [Y | X] .

I Mean independence: Y and X are mean independent if

E [Y | X] = E [Y ] = constant.
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Relationship between different concepts of independence

X and Y are independent
⇓

E [Y | X] = constant (mean independence)
⇓

Cov [X ,Y ] = 0 (uncorrelatedness)
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Proof of LIE
I If X and Y are continuous,

E [E [Y | X]] =
∫

E [Y | X = x] fX (x) dx

=

∫ (∫
y fY |X (y | x) dy

)
fX (x) dx

=

∫ ∫
y fX,Y (x, y) dydx

=

∫
y fY (y) dy

=E [Y ] .

I The same is true if X and Y are discrete. We replace integrals by
sums.

I The same is true if one of X and Y is discrete and the other is
continuous.
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Conditional variance

I Conditional variance is like variance, but defined by replacing
ordinary expectation by conditional expectation:

Var [Y | X] =E
[
(Y − E [Y | X])2 | X

]
=E

[
Y2 | X

]
− (E [Y | X])2 .

I Similarly, we define conditional covariance between X and Y ,
conditional on Z:

Cov [X ,Y | Z] =E [(X − E [X | Z]) (Y − E [Y | Z]) | Z]
=E [XY | Z] − E [X | Z]E [Y | Z] .
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Iterated variance
I We can calculate:

Var [Y ] =E
[
(Y − E [Y ])2

]
=E

[
(Y − E [Y | X] + E [Y | X] − E [Y ])2

]
=E

[
(Y − E [Y | X])2

]
+ E

[
(E [Y | X] − E [Y ])2

]
+ 2E [(Y − E [Y | X]) (E [Y | X] − E [Y ])] .

I By LIE,

E
[
(Y − E [Y | X])2

]
=E

[
E

[
(Y − E [Y | X])2 | X

] ]
=E [Var [Y | X]] .

I By definition of variance,

E
[
(E [Y | X] − E [Y ])2

]
= Var [E [Y | X]] ,

since E [E [Y | X]] = E [Y ].
10 / 13



Iterated variance

I We can show

E [(Y − E [Y | X]) (E [Y | X] − E [Y ])] = 0.

I In summary, we have

Var [Y ] = E [Var [Y | X]] +Var [E [Y | X]] .
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Bivariate normal distributions

I X and Y have a bivariate normal distribution if their joint PDF is
given by:

f (x, y) =
1

2π
√
(1 − ρ)2 σ2

Xσ
2
Y

exp

[
−

1
2 (1 − ρ)2

(
(x − µX)2

σ2
X

+

+
(y − µY )

2

σ2
Y

− 2ρ
(x − µX) (y − µY )

σXσY

)]
,

µX = E [X] , µY = E [Y ] ,σ2
X = Var [X] ,σ2

Y = Var [Y ] , and
ρ = Corr [X ,Y ] .
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Properties of bivariate normal distributions

I If X and Y have a bivariate normal distribution:

a + bX + cY ∼ N (E [a + bX + cY ] , Var [a + bX + cY ])

= N
(
a + bµX + cµY , b2σ2

X + c2σ2
Y + 2bcρσXσY

)
.

I Cov [X ,Y ] = 0 =⇒ X and Y are independent.
I E [Y | X] = µY +

Cov[X,Y]
σ2

X

(X − µX) .
I Can be generalized to more than two random variables

(multivariate normal).
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