
Introductory Econometrics
Lecture 3: Review of Conditional Distribution and Expectation

Instructor: Ma, Jun

Renmin University of China

October 1, 2022

1 / 13



Conditional PMF

▶ Conditional PMF (when (𝑌 , 𝑋) are discrete): If Pr [𝑋 = 𝑥1] ≠ 0,

𝑝
𝑌 |𝑋=𝑥1
𝑗

= Pr
[
𝑌 = 𝑦 𝑗 | 𝑋 = 𝑥1

]
=

Pr
[
𝑌 = 𝑦 𝑗 , 𝑋 = 𝑥1

]
Pr [𝑋 = 𝑥1]

=
𝑝1, 𝑗

𝑝𝑋1
.

▶ If independent:

Pr [𝑌 = 𝑦 | 𝑋 = 𝑥] =
Pr [𝑋 = 𝑥,𝑌 = 𝑦]

Pr [𝑋 = 𝑥]

=
Pr [𝑋 = 𝑥] Pr [𝑌 = 𝑦]

Pr [𝑋 = 𝑥]
= Pr [𝑌 = 𝑦] .
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Conditional PDF

▶ Conditional PDF (when (𝑌 , 𝑋) are continuous):

𝑓𝑌 |𝑋 (𝑦 | 𝑥) = 𝑓𝑋,𝑌 (𝑥, 𝑦)
𝑓𝑋 (𝑥) .

▶ If 𝑋 and 𝑌 are independent, 𝑓𝑌 |𝑋 (𝑦 | 𝑥) = 𝑓𝑌 (𝑦) for all 𝑥.
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Randomness

▶ Suppose you know that 𝑋 = 𝑥. You can update your expectation
of 𝑌 by conditional expectation. We define conditional
expectationfrom conditional PMF and PDF:

E [𝑌 | 𝑋 = 𝑥] =
∑︁
𝑖

𝑦𝑖Pr [𝑌 = 𝑦𝑖 | 𝑋 = 𝑥] (discrete)

E [𝑌 | 𝑋 = 𝑥] =

∫
𝑦 𝑓𝑌 |𝑋 (𝑦 | 𝑥) d𝑦 (continuous).

E [𝑌 | 𝑋 = 𝑥] is a constant.
▶ Suppose that the conditional distribution of 𝑌 given 𝑋 = 𝑥 is

exponential (𝑥), i.e., 𝑓𝑌 |𝑋 (𝑦 | 𝑥) = 𝑥 · exp (−𝑥𝑦), then

E [𝑌 | 𝑋 = 𝑥] =
∫ ∞

0
𝑦 𝑓𝑌 |𝑋 (𝑦 | 𝑥) d𝑦 =

∫ ∞

0
𝑦𝑥exp (−𝑥𝑦) d𝑦 =

1
𝑥

.
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Conditional expectations as random variables

▶ A conditional expectation E [𝑌 | 𝑋 = 𝑥] is a number not a
random variable. E [𝑌 | 𝑋 = 𝑥] is not random, not a function of
𝑌 . It is a function of the observed “realized” value 𝑥 of the
random variable 𝑋 .

▶ We denote this function by 𝑔 (𝑥) = E [𝑌 | 𝑋 = 𝑥]. Notice that 𝑔
is an ordinary function of 𝑥, which is just a number.

▶ 𝑔 (𝑋) is a random variable. If denoting E [𝑌 | 𝑋] = 𝑔 (𝑋),
E [𝑌 | 𝑋] is a random variable and a function of 𝑋 (Uncertainty
about 𝑋 has not been realized yet):

E [𝑌 | 𝑋] =
∑︁
𝑖

𝑦𝑖Pr [𝑌 = 𝑦𝑖 | 𝑋] = 𝑔 (𝑋)

E [𝑌 | 𝑋] =

∫
𝑦 𝑓𝑌 |𝑋 (𝑦 | 𝑋) d𝑦 = 𝑔 (𝑋) .
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Properties of conditional expectations
▶ Conditional expectations satisfies all properties of unconditional

expectation. E.g.

E [𝑌 + 𝑍 | 𝑋] = E [𝑌 | 𝑋] + E [𝑍 | 𝑋] .

▶ Once you condition on 𝑋 , you can treat any function of 𝑋 as a
constant:

E [ℎ1 (𝑋) + ℎ2 (𝑋)𝑌 | 𝑋] = ℎ1 (𝑋) + ℎ2 (𝑋) E [𝑌 | 𝑋] ,

for any functions ℎ1 and ℎ2.
▶ Law of Iterated Expectation (LIE):

E [E [𝑌 | 𝑋]] = E [𝑌 ] ,
E [E [𝑌 | 𝑋 , 𝑍] | 𝑋] = E [𝑌 | 𝑋]
E [E [𝑌 | 𝑋] | 𝑋 , 𝑍] = E [𝑌 | 𝑋] .

▶ Mean independence: 𝑌 and 𝑋 are mean independent if

E [𝑌 | 𝑋] = E [𝑌 ] = constant.
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Relationship between different concepts of independence

𝑋 and 𝑌 are independent
⇓

E [𝑌 | 𝑋] = constant (mean independence)
⇓

Cov [𝑋 ,𝑌 ] = 0 (uncorrelatedness)
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Proof of LIE
▶ If 𝑋 and 𝑌 are continuous,

E [E [𝑌 | 𝑋]] =

∫
E [𝑌 | 𝑋 = 𝑥] 𝑓𝑋 (𝑥) d𝑥

=

∫ (∫
𝑦 𝑓𝑌 |𝑋 (𝑦 | 𝑥) d𝑦

)
𝑓𝑋 (𝑥) d𝑥

=

∫ ∫
𝑦 𝑓𝑋,𝑌 (𝑥, 𝑦) d𝑦d𝑥

=

∫
𝑦 𝑓𝑌 (𝑦) d𝑦

= E [𝑌 ] .

▶ The same is true if 𝑋 and 𝑌 are discrete. We replace integrals by
sums.

▶ The same is true if one of 𝑋 and 𝑌 is discrete and the other is
continuous.
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Conditional variance

▶ Conditional variance is like variance, but defined by replacing
ordinary expectation by conditional expectation:

Var [𝑌 | 𝑋] = E
[
(𝑌 − E [𝑌 | 𝑋])2 | 𝑋

]
= E

[
𝑌2 | 𝑋

]
− (E [𝑌 | 𝑋])2 .

▶ Similarly, we define conditional covariance between 𝑋 and 𝑌 ,
conditional on 𝑍:

Cov [𝑋 ,𝑌 | 𝑍] = E [(𝑋 − E [𝑋 | 𝑍]) (𝑌 − E [𝑌 | 𝑍]) | 𝑍]
= E [𝑋𝑌 | 𝑍] − E [𝑋 | 𝑍] E [𝑌 | 𝑍] .
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Iterated variance
▶ We can calculate:

Var [𝑌 ] = E
[
(𝑌 − E [𝑌 ])2]

= E
[
(𝑌 − E [𝑌 | 𝑋] + E [𝑌 | 𝑋] − E [𝑌 ])2]

= E
[
(𝑌 − E [𝑌 | 𝑋])2] + E

[
(E [𝑌 | 𝑋] − E [𝑌 ])2]

+2 · E [(𝑌 − E [𝑌 | 𝑋]) (E [𝑌 | 𝑋] − E [𝑌 ])] .

▶ By LIE,

E
[
(𝑌 − E [𝑌 | 𝑋])2] = E

[
E

[
(𝑌 − E [𝑌 | 𝑋])2 | 𝑋

] ]
= E [Var [𝑌 | 𝑋]] .

▶ By definition of variance,

E
[
(E [𝑌 | 𝑋] − E [𝑌 ])2] = Var [E [𝑌 | 𝑋]] ,

since E [E [𝑌 | 𝑋]] = E [𝑌 ].
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Iterated variance

▶ We can show

E [(𝑌 − E [𝑌 | 𝑋]) (E [𝑌 | 𝑋] − E [𝑌 ])] = 0.

▶ In summary, we have

Var [𝑌 ] = E [Var [𝑌 | 𝑋]] + Var [E [𝑌 | 𝑋]] .
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Bivariate normal distributions

▶ 𝑋 and 𝑌 have a bivariate normal distribution if their joint PDF is
given by:

𝑓 (𝑥, 𝑦) =
1

2𝜋
√︃
(1 − 𝜌)2 𝜎2

𝑋
𝜎2
𝑌

exp

[
− 1

2 (1 − 𝜌)2

(
(𝑥 − 𝜇𝑋)2

𝜎2
𝑋

+

+ (𝑦 − 𝜇𝑌 )2

𝜎2
𝑌

− 2𝜌
(𝑥 − 𝜇𝑋) (𝑦 − 𝜇𝑌 )

𝜎𝑋𝜎𝑌

)]
,

𝜇𝑋 = E [𝑋] , 𝜇𝑌 = E [𝑌 ] ,𝜎2
𝑋
= Var [𝑋] ,𝜎2

𝑌
= Var [𝑌 ] , and

𝜌 = Corr [𝑋 ,𝑌 ] .
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Properties of bivariate normal distributions

▶ If 𝑋 and 𝑌 have a bivariate normal distribution:

𝑎 + 𝑏𝑋 + 𝑐𝑌 ∼ N (E [𝑎 + 𝑏𝑋 + 𝑐𝑌 ] , Var [𝑎 + 𝑏𝑋 + 𝑐𝑌 ])
= N

(
𝑎 + 𝑏𝜇𝑋 + 𝑐𝜇𝑌 , 𝑏2𝜎2

𝑋 + 𝑐2𝜎2
𝑌 + 2𝑏𝑐𝜌𝜎𝑋𝜎𝑌

)
.

▶ Cov [𝑋 ,𝑌 ] = 0 =⇒ 𝑋 and 𝑌 are independent.
▶ E [𝑌 | 𝑋] = 𝜇𝑌 + Cov[𝑋,𝑌 ]

𝜎2
𝑋

(𝑋 − 𝜇𝑋) .

▶ Can be generalized to more than two random variables
(multivariate normal).
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