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Abstract

We apply causal forests to a dataset derived from the National Study of Learning Mindsets,
and discusses resulting practical and conceptual challenges. This note will appear in an upcoming
issue of Observational Studies, Empirical Investigation of Methods for Heterogeneity, that compiles
several analyses of the same dataset.

1. Methodology and Motivation

There has been considerable recent interest in methods for heterogeneous treatment effect estimation
in observational studies (Athey and Imbens, 2016; Athey et al., 2019; Ding et al., 2016; Dorie et al.,
2017; Hahn et al., 2017; Hill, 2011; Imai and Ratkovic, 2013; Kiinzel et al., 2017; Luedtke and van der
Laan, 2016; Nie and Wager, 2017; Shalit et al., 2017; Su et al., 2009; Wager and Athey, 2018; Zhao
et al., 2017). In order to help elucidate the drivers of successful approaches to treatment effect
estimation, Carlos Carvalho, Jennifer Hill, Avi Feller and Jared Murray organized a workshop at
the 2018 Atlantic Causal Inference Conference and asked several authors to analyze a shared dataset
derived from the National Study of Learning Mindsets (Yeager et al., 2016).

This note presents an analysis using causal forests (Athey et al., 2019; Wager and Athey, 2018);
other approaches will be discussed in a forthcoming issue of Observational Studies with title “Em-
pirical Investigation of Methods for Heterogeneity.” All analyses are carried out using the R package
grf, version 0.10.2 (Tibshirani et al., 2018; R Core Team, 2017). Full replication files are available
at github.com/grf-labs/grf, in the directory experiments/acic18.

1.1 The National Study of Learning Mindsets

The National Study of Learning Mindsets is a randomized study conducted in U.S. public high
schools, the purpose of which was to evaluate the impact of a nudge-like intervention designed to
instill students with a growth mindset! on student achievement. To protect student privacy, the
present analysis is not based on data from the original study, but rather on data simulated from
a model fit to the National Study dataset by the workshop organizers. The present analysis could
serve as a pre-analysis plan to be applied to the original National Study dataset (Nosek et al., 2015).

Our analysis is based on data from n = 10,391 children from a probability sample of J = 76
schools.? For each child i = 1, ..., n, we observe a binary treatment indicator Z;, a real-valued
outcome Y;, as well as 10 categorical or real-valued covariates described in Table 1. We expanded

1. According to the National Study, “A growth mindset is the belief that intelligence can be developed. Students
with a growth mindset understand they can get smarter through hard work, the use of effective strategies, and
help from others when needed. It is contrasted with a fixed mindset: the belief that intelligence is a fixed trait
that is set in stone at birth.”

2. Initially, 139 schools were recruited into the study using a stratified probability sampling method (Gopalan
and Tipton, 2018). Of these 139 recruited schools, 76 agreed to participate in the study; then, students were
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83 Student’s self-reported expectations for success in the future, a proxy for prior
achievement, measured prior to random assignment

C1 Categorical variable for student race/ethnicity

C2 Categorical variable for student identified gender

C3 Categorical variable for student first-generation status, i.e. first in family to go

to college

XC  School-level categorical variable for urbanicity of the school, i.e. rural, suburban,
etc.

X1 School-level mean of students’ fixed mindsets, reported prior to random assign-
ment

X2  School achievement level, as measured by test scores and college preparation for
the previous 4 cohorts of students

X3  School racial/ethnic minority composition, i.e., percentage of student body that
is Black, Latino, or Native American

X4 School poverty concentration, i.e., percentage of students who are from families
whose incomes fall below the federal poverty line

X5  School size, i.e., total number of students in all four grade levels in the school

Y  Post-treatment outcome, a continuous measure of achievement

Z  Treatment, i.e., receipt of the intervention

Table 1: Definition of variables measured in the National Study of Learning Mindsets

out categorical random variables via one-hot encoding, thus resulting in covariates X; € RP with
p = 28. Given this data, the workshop organizers expressed particular interest in the three following
questions:

1. Was the mindset intervention effective in improving student achievement?

2. Was the effect of the intervention moderated by school level achievement (X2) or pre-existing
mindset norms (X1)? In particular there are two competing hypotheses about how X2 moder-
ates the effect of the intervention: Either it is largest in middle-achieving schools (a “Goldilocks
effect”) or is decreasing in school-level achievement.

3. Do other covariates moderate treatment effects?

We define causal effects via the potential outcomes model (Imbens and Rubin, 2015): For each sample
i, we posit potential outcomes Y;(0) and Y;(1) corresponding to the outcome we would have observed
had we assigned control or treatment to the i-th sample, and assume that we observe Y; = Y;(Z;).
The average treatment effect is then defined as 7 = E [Y;(1) — Y;(0)], and the conditional average
treatment effect function is 7(z) = E [Y;(1) — Y;(0) | X; = x].

This dataset exhibits two methodological challenges. First, although the National Study itself
was a randomized study, there seems to be some selection effects in the synthetic data used here. As
seen in Figure 1, students with a higher expectation of success appear to be more likely to receive
treatment. For this reason, we analyze the study as an observational rather than randomized study.
In order to identify causal effects, we assume unconfoundedness, i.e., that treatment assignment is
as good as random conditionally on covariates (Rosenbaum and Rubin, 1983)

{Y:(0), i)} L Zi | X;. (1)

individually randomized within the participating schools. In this note, we do not discuss potential bias from the
non-randomized selection of 76 schools among the 139 recruited ones.
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Figure 1: Visualizing estimated treatment propensities against student expectation of success.

To relax this assumption, one could try to find an instrument for treatment assignment (Angrist
and Pischke, 2008), or conduct a sensitivity analysis for hidden confounding (Rosenbaum, 2002).

Second, the students in this study are not independently sampled; rather, they are all drawn
from 76 randomly selected schools, and there appears to be considerable heterogeneity across schools.
Such a situation could arise if there are unobserved school-level features that are important treat-
ment effect modifiers; for example, some schools may have leadership teams who implemented the
intervention better than others, or may have a student culture that is more receptive to the treat-
ment. If we want our conclusions to generalize outside of the 76 schools we ran the experiment in, we
must run an analysis that robustly accounts for the sampling variability of potentially unexplained
school-level effects. Here, we take a conservative approach, and assume that the outcomes Y; of
students within a same school may be arbitrarily correlated within a school (or “cluster”), and then
apply cluster-robust analysis tools (Abadie et al., 2017).

The rest of this section presents a brief overview of causal forests, with an emphasis of how they
address issues related to clustered observations and selection bias. Causal forests are an adaptation
of the random forest algorithm of Breiman (2001) to the problem of heterogeneous treatment effect
estimation. For simplicity, we start below by discussing how to make random forests cluster-robust in
the classical case of non-parametric regression, where we observe pairs (X;, Y;) and want to estimate
w(x) =FE [Yi ‘ X, = x} Then, in the next section, we review how forests can be used for treatment
effect estimation in observational studies.

1.2 Cluster-Robust Random Forests

When observations are grouped in unevenly sized clusters, it is important to carefully define the
underlying target of inference. For example, in our setting, do we want to fit a model that accurately
reflects heterogeneity in our available sample of J = 76 schools, or one that we hope will generalize
to students from other schools also? Should we give more weight in our analysis to schools from
which we observe more students?

Here, we assume that we want results that generalize beyond our J schools, and that we give
each school equal weight; quantitatively, we want models that are accurate for predicting effects on
a new student from a new school. Thus, if we only observed outcomes Y; for students with school
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membership A; € {1, ..., J} we would estimate the global mean as ji with standard error &, with
1 1< 1
~ ~ ~ ~ ~ AN2
Hj = E Yi, =7 E fij,  6° “TJJ-1 E (i — )", (2)
n; ‘ /— (J—1) 4
{i:A;=35} j=1 j=1

where n; denotes the number of students in school j. Our challenge is then to use random forests to
bring covariates into an analysis of type (2). Formally, we seek to carry out a type of non-parametric
random effects modeling, where each school is assumed to have some effect on the student’s outcome,
but we do not make assumptions about its distribution (in particular, we do not assume that school
effects are Gaussian or additive).

At a high level, random forests make predictions as an average of b trees, as follows: (1) For each
b=1, .., B, draw a subsample S, C {1, ..., n}; (2) Grow a tree via recursive partitioning on each
such subsample of the data; and (3) Make predictions

LY ({X € L), i € S))
7;; {i: Xi € Ly(x), i€ S}’ (3)

where Ly(x) denotes the leaf of the b-th tree containing the training sample z. In the case of out-of-
bag prediction, we estimate [L(’i)(Xi) by only considering those trees b for which i ¢ S,. This short
description of forests of course leaves many details implicit. We refer to Biau and Scornet (2016) for
a recent overview of random forests and note that, throughout, all our forests are “honest” in the
sense of Wager and Athey (2018).

When working with clustered data, we adapt the random forest algorithm as follows. In step
(1), rather than directly drawing a subsample of observations, we draw a subsample of clusters
Jp C {1, ..., J}; then, we generate the set S, by drawing k samples at random from each cluster
j € J».> The other point where clustering matters is when we want to make out-of-bag predictions
in step (3). Here, to account for potential correlations within each cluster, we only consider an
observation ¢ to be out-of-bag if its cluster was not drawn in step (1), i.e., if A; & Jp.

1.3 Causal Forests for Observational Studies

One promising avenue to heterogeneous treatment effect estimation starts from an early result of
Robinson (1988) on inference in the partially linear model (Nie and Wager, 2017; Zhao et al.,
2017). Write e(z) = P [Zi ’Xi = x] for the propensity score and m(z) = E [YZ ’XZ- = J:] for the
expected outcome marginalizing over treatment. If the conditional average treatment effect function
is constant, i.e., 7(x) = 7 for all x € X, then the following estimator is semiparametrically efficient
for 7 under unconfoundedness (1) (Chernozhukov et al., 2017; Robinson, 1988):

w2 iy (Y —mTI(X5)) (2 — eV (X))
LY, (2 - e0(xy)

assuming that /m and é are o(nfl/ 4)-consistent for m and e respectively in root-mean-squared error,
that the data is independent and identically distributed, and that we have overlap, i.e., that propen-
sities e(z) are uniformly bounded away from 0 and 1. The (~"-superscripts denote “out-of-bag”
“out-of-fold” predictions meaning that, e.g., ¥; was not used to compute 7= (X;).

T =

, (4)

3. If k < nj for all j =1, ..., J, then each cluster contributes the same number of observations to the forest as in
(2). In grf, however, we also allow users to specify a value of k larger than the smaller n;; and, in this case, for
clusters with n; < k, we simply use the whole cluster (without duplicates) every time j € J. This latter option
may be helpful in cases where there are some clusters with a very small number of observations, yet we want S,
to be reasonably large so that the tree-growing algorithm is stable.
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Although the original estimator (4) was designed for constant treatment effect estimation, Nie
and Wager (2017) showed that we can use it to motivate an “R-learner” objective function for
heterogeneous treatment effect estimation,

#() = argmin, {Z (v =~ m=90x0) —7(x0) (20— 69(x)) + A <T<~>>} NG

i=1

where A, (7(+)) is a regularizer that controls the complexity of the learned 7(-) function. A desirable
property of this approach is that, if the true conditional average treatment effect function 7(-) is
simpler than the main effect function m(-) or the propensity function e(-), e.g., qualitatively, that
7(-) allows for a sparser representation than m(-) or e(-), then the function 7(-) learned by optimizing
(5) may converge faster than the estimates for 7(-) or é(-) used to form the objective function.

Causal forests as implemented in grf can be seen as a forest-based method motivated by the
R-learner (5). Typically, random forests (Breiman, 2001) are understood as an ensemble method: A
random forest prediction is an average of predictions made by individual trees. However, as discussed
in Athey et al. (2019), we can equivalently think of random forests as an adaptive kernel method;
for example, we can re-write the regression forest from (3) as

) - 1 G 1({X; € Lylx),i €S
) = Yoo o) = YR T e ST ©

where, qualitatively, «;(x) is a data-adaptive kernel that measures how often the i-th training
example falls in the same leaf as the test point x. This kernel-based perspective on forests suggests
a natural way to use them for treatment effect estimation based on (4) and (5): First, we grow a
forest to get weights a;(z), and then set

P Z?:l OéZ(LU) (Y; — m(—i) (Xl)) (Zz B é(_l)(Xl)) ) (7)
Y i) (2 - e-D(X;))?

Athey et al. (2019) discuss this approach in more detail, including how to design a splitting rule for
a forest that will be used to estimate predictions via (7). Finally, we address clustered observations
by modifying the random forest sampling procedure in an analogous way to the one used in Section
1.2.

Concretely, the grf implementation of causal forests starts by fitting two separate regression
forests to estimate m(:) and é(-). It then makes out-of-bag predictions using these two first-stage
forests, and uses them to grow a causal forest via (7). Causal forests have several tuning parameters
(e.g., minimum node size for individual trees), and we choose those tuning parameters by cross-
validation on the R-objective (5), i.e., we train causal forests with different values of the tuning
parameters, and choose the ones that make out-of-bag estimates of the objective minimized in (5)
as small as possible.

We provide an exact implementation of our treatment effect estimation strategy with causal
forests in Algorithm 1. We train the Y.forest and Z.forest using default settings, as their pre-
dictions are simply used as inputs to the causal forest and default parameter choices often perform
reasonably well with random forests.* For our final causal forest, however, we deploy some tweaks for
improved precision. Motivated by Basu et al. (2018), we start by training a pilot random forest on all
the features, and then train a second forest on only those features that saw a reasonable number of

4. The nuisance components Y.hat or Z.hat need not be estimated by a regression forest. We could also use
other predictive methods (e.g., boosting with cross-fitting) or use oracle values (e.g., the true randomization
probabilities for Z.hat in a randomized trial). If we simply run the command causal_forest(X, Y, Z) without
specifying Y.hat or Z.hat, then the software silently estimates Y.hat or Z.hat via regression forests.
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Algorithm 1 Estimating treatment effects with causal forests. Throughout this note, we follow
editorial guidelines for the special issue of Observational Studies, and denote treatment assignment
by Z. However, the grf interface has different conventions, and treatment assignment is denoted by
W rather than Z (e.g., the function causal_forest actually has an argument W.hat, not Z.hat).
In order to get these code snippets to run in grf, all the “Z” need to be replaced with “W”.

Y.forest = regression_forest(X, Y, clusters = school.id)
Y.hat = predict(Y.forest)$predictions
Z.forest = regression_forest(X, Z, clusters = school.id)
Z.hat = predict(Z.forest)$predictions

cf.raw = causal_forest(X, Y, Z,
Y.hat = Y.hat, Z.hat = Z.hat,
clusters = school.id)

varimp = variable_importance (cf.raw)

selected.idx = which(varimp > mean(varimp))

cf = causal_forest(X[,selected.idx], Y, Z,
Y.hat = Y.hat, Z.hat = Z.hat,
clusters = school.id,
samples_per_cluster = 50,
tune.parameters = TRUE)
tau.hat = predict(cf)$predictions

splits in the first step.® This enables the forest to make more splits on the most important features in
low-signal situations. Second, we increase the samples_per_cluster parameter (called k in Section
1.2) to increase the number of samples used to grow each tree. Finally, the option tune.parameters
= TRUE has the forest cross-validate tuning parameters using the R-objective rather than just setting
defaults.

2. Workshop Results

We now use our causal forest as trained in Algorithm 1 to explore the questions from Section 1.1.

2.1 The average treatment effect

The first question asks about the overall effectiveness of the intervention. The package grf has a
built-in function for average treatment effect estimation, based on a variant of augmented inverse-
propensity weighting (Robins et al., 1994). With clusters, we compute an average treatment effect
estimate 7 and a standard error estimate 62 as follows:

J
1 -~ 1 1

o= F = — T 52 = — To— T 2
vl SEE A D BURNL S e POl

{i:4;=5} Jj=1 j=1 (8)
~ ) 7. — o(=1) (X;) )
T =70 (X, — . : g
T+ e (X5) (1 = e (X))

See Section 2.1 of Farrell (2015) for a discussion of estimators with this functional form, and Section
2.4 of Athey et al. (2018) for a recent literature review. The value of cross-fitting is stressed in

5. Given good estimates of Y.hat and Z.hat, the construction (7) eliminates confounding effects. Thus, we do not
need to give the causal forest all features X that may be confounders. Rather, we can focus on features that we
believe may be treatment modifiers; see Zhao et al. (2017) for a further discussion.
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Chernozhukov et al. (2017). An application of this method suggests that the treatment had a large
positive on average.

ATE = average_treatment_effect (cf)
> "95% CI for the ATE: 0.247 +/- 0.04"

2.2 Assessing treatment heterogeneity

The next two questions pertain to treatment heterogeneity. Before addressing questions, however,
it is useful to ask whether the causal forest has succeeded in accurately estimating treatment het-
erogeneity. As seen in Figure 2, the causal forest CATE estimates obviously exhibit variation; but
this does not automatically imply that 7(—9(X;) is a better estimate of 7(X;) than the overall av-
erage treatment effect estimate 7 from (8). Below, we seek an overall hypothesis test for whether
heterogeneity in 7(~9(X;) is associated with heterogeneity in 7(X;).

A first, simple approach to testing for heterogeneity involves grouping observations according
to whether their out-of-bag CATE estimates are above or below the median CATE estimate, and
then estimating average treatment effects in these two subgroups separately using the doubly robust
approach (8). This procedure is somewhat heuristic, as the “high” and “low” subgroups are not
independent of the scores I'; used to estimate the within-group effects; however, the subgroup def-
inition does not directly depend on the outcomes or treatments (Y;, Z;) themselves, and it appears
that this approach can provide at least qualitative insights about the strength of heterogeneity.

We also try a second test for heterogeneity, motivated by the “best linear predictor” method
of Chernozhukov et al. (2018), that seeks to fit the CATE as a linear function of the the out-of-
bag causal forest estimates 7(~9(X;). Concretely, following (4), we create two synthetic predictors,
C; =7(Z; — e9(X;)) and D; = (70)(X;) — 7)(Z; — e9(X;)) where 7 is the average of the out-
of-bag treatment effect estimates, and regress Y; — (=D (X;) against C; and D;. Then, we can
interpret the coefficient of D; as a measure of the quality of the estimates of treatment heterogeneity,
while C; absorbs the average treatment effect. If the coefficient on D; is 1, then the treatment
heterogeneity estimates are well calibrated, while if the coefficient is D; significant and positive, then
at least we have evidence of a useful association between 7(~(X;) and 7(X;). More formally, one
could use the p-value for the coefficient of D; to test the hypothesis that the causal forest succeeded
in finding heterogeneity; however, we caution that asymptotic results justifying such inference are
not presently available.

Below, we show output from running both analyses (note that all results are cluster-robust,
where each cluster gets the same weight). The overall picture appears somewhat mixed: Although
point estimates are consistent with the presence of heterogeneity, neither detection is significant.
Thus, at least if we insist on cluster-robust inference, any treatment heterogeneity that may be
present appears to be relatively weak, and causal forests do not identify subgroups with effects that
obviously stand out. We discuss the role of cluster-robustness further in Section 3.1.

# Compare regions with high and low estimated CATEs
high_effect = tau.hat > median(tau.hat)

ate.high = average_treatment_effect(cf, subset = high_effect)
ate.low = average_treatment_effect(cf, subset = !high_effect)
> "95% CI for difference in ATE: 0.053 +/- 0.071"

# Run best linear predictor analysis
test_calibration(cf)

> Estimate Std. Error t value Pr(>|t])
> mean.prediction 1.007477 0.083463 12.0710 <2e-16 *xx
> differential.prediction 0.321932 0.306738 1.0495 0.294
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Figure 2: Histogram of out-of-bag CATE estimates from a causal forest trained as in Algorithm 1.
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Figure 3: Panel (a) plots students’ CATE estimates against school-level mindset X1. Panel (b)
compares estimates from a regression forest trained to predict the per-school doubly robust treatment
effect estimates 7; from (8) using school-level covariates, to school-wise averages of the causal forest
estimates 7(~9)(X;) trained as in Algorithm 1.

2.3 The effect of X1 and X2

Although our omnibus tests did not find strong evidence of treatment heterogeneity, this does not
mean there is no heterogeneity present. Researchers had pre-specified interest in heterogeneity along
two specific variables, namely pre-existing mindset (X1) and school-level achievement (X2), and it
is plausible that a test for heterogeneity that focuses on these two variables may have more power
than the agnostic tests explored above.
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Both X1 and X2 are school-level variables, so we here design tests based on the per-school doubly
robust treatment effect estimates 7; computed in (8). As seen below, this more targeted analysis
uncovers notable heterogeneity along X1, i.e., schools with larger values of X1 appear to experience
larger effects than schools with smaller values of X1. Conversely, we do not see much heterogeneity
along X2, whether we divide schools into 2 subgroups (to test the monotone hypothesis) or into 3
subgroups (to test the goldilocks hypothesis).

Although the p-value for heterogeneity along X1 is not small enough to withstand a Bonferroni
test, it seems reasonable to take the detection along X1 seriously because heterogeneity along X1
was one of two pre-specified hypotheses. Interestingly, we also note that X1 was the most important
variable in the causal forest: The final causal forest was trained on 9 “selected” variables, and spent
24% of its splits on X1 with splits weighted by depth (as in the function variable_importance).
The left panel of Figure 3 plots the relationship between X1 and 7(=9(X;).

dr.score = tau.hat + Z / cf$Z.hat x*

(Y - cf$Y.hat - (1 - cf$Z.hat) * tau.hat) -

(1 -2z2) / (1 - cf$Z.hat) * (Y - cf$Y.hat + cf$Z.hat * tau.hat)
school.score = t(school.mat) %*% dr.score / school.size

school.X1 = t(school.mat) ¥%x*% X$X1 / school.size
high.X1 = school.Xl > median(school.X1)
t.test(school.scorel[high.X1], school.score[!'high.X1])
>t = -3.0205, df = 72.087, p-value = 0.00349

> 95 percent confidence interval: -0.1937 -0.0397

school.X2 = (t(school.mat) %*% X$X2) / school.size
high.X2 = school.X2 > median(school.X2)
t.test(school.score[high.X2], school.score[!high.X2])
>t = 1.043, df = 72.431, p-value = 0.3004

> 95 percent confidence interval: -0.0386 0.1234

school.X2.levels = cut(school.X2,
breaks = c(-Inf, quantile(school.X2, c(1/3, 2/3)), Inf))

summary (aov (school.score ~ school.X2.levels))

> Df Sum Sq Mean Sq F value Pr(>F)
> school.X2.levels 2 0.085 0.04249 1.3656 0.262
> Residuals 73 2.272 0.03112

2.4 Looking for school-level heterogeneity

Our omnibus test for heterogeneity from Section 2.2 produced mixed results; however, when we
zoomed in on the pre-specified covariates X1 and X2 in Section 2.3, we uncovered interesting results.
Noticing that both X1 and X2 are school-level (as opposed to student-level) covariates, it is natural
to ask whether an analysis that only focuses only on school-level effects may have had more power
than our original analysis following Algorithm 1.

Here, we examine this question by fitting models to the school-level estimates 7; from (8) using
only school level covariates. We considered both an analysis using a regression forest, as well
as classical linear regression modeling. Both methods, however, result in conclusions that are in
line with the ones obtained above. The strength of the heterogeneity found by the regression
forest trained on the 7; as measured by the “calibration test” is comparable to the strength of the
heterogeneity found by our original causal forest; moreover, as seen in the right panel of Figure 3, the
predictions made by this regression forest are closely aligned with school-wise averaged predictions
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from the original causal forest. Meanwhile, a basic linear regression analysis uncovers a borderline
amount of effect modification along X1 and nothing else stands out.

The overall picture is that, by looking at the predictor X1 alone, we can find credible effect
modification that is correlated negatively with X1. However, there does not appear to be strong
enough heterogeneity for us to be able to accurately fit a more complex model for 7(-): Even a linear
model for effect modification starts to suffer from low signal, and it is not quite clear whether X1 is
an effect modifier after we control for the other school-level covariates.

# Regression forest analysis

school.forest = regression_forest(school.X, school.score)
school.pred = predict(school.forest)$predictions
test_calibration(school.forest)

> Estimate Std. Error t value Pr(>|t])

> mean.prediction 0.998765 0.083454 11.9679 <2e-16 **x
> differential.prediction 0.619299 0.706514 0.8766 0.3836

# Ordinary least-squares analysis

coeftest (Im(school.score ~ school.X), vcov = vcovHC)
> Estimate Std. Error t value Pr(>|t])
> (Intercept) 0.2434703 0.0770302 3.1607 0.002377 =*x*
> X1 -0.0493032 0.0291403 -1.6919 0.095377
> X2 0.0143625 0.0340139 0.4223 0.674211
> X3 0.0092693 0.0264267 0.3508 0.726888
> X4 0.0248985 0.0258527 0.9631 0.339019
> X5 -0.0336325 0.0265401 -1.2672 0.209525
> XC.1 -0.0024447 0.0928801 -0.0263 0.979081
> XC.2 0.0826898 0.1052411 0.7857 0.434845
> XC.3 -0.1376920 0.0876108 -1.5716 0.120818
> XC.4 0.0408624 0.0820938 0.4978 0.620313

3. Post-workshop analysis

Two notable differences between the causal forest analysis used here and a more direct machine-
learning-based analysis were our use of cluster-robust methods, and of orthogonalization for robust-
ness to confounding as in (7). To understand the value of these features, we revisit some analyses
from Section 2 without them.

3.1 The value of clustering

If we train a causal forest on students without clustering by school, we obtain markedly different
results from before: The confidence interval for the average treatment effect is now roughly half as
long as before, and there appears to be unambiguously detectable heterogeneity according to the
test_calibration function. Moreover, as seen in the left panel of Figure 4, the CATE estimates
#(=9(X;) obtained without clustering are much more dispersed than those obtained with clustering
(see Figure 2): The sample variance of the 7(~%(X;) increases by a factor 5.82 without clustering.
It appears that these strong detections without clustering are explained by excess optimism from
ignoring variation due to idiosyncratic school-specific effects, rather than from a true gain in power
from using a version of causal forests without clustering. The right panel of Figure 4 shows per-school
estimates of %(’i)(Xi) from the non-cluster-robust causal forest, and compares them to predictions
for the mean CATE in the school obtained in a way that is cluster-robust. The differences are
striking: For example, the left-most school in the right panel of Figure 4 has non-cluster-robust
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7(=9(X;) estimates that vary from 0.26 to 0.36, whereas the cluster-robust estimate of its mean
CATE was roughly 0.2. A simple explanation for how this could happen is that students in the
school happened to have unusually high treatment effects, and that the non-cluster-robust forest
was able to overfit to this school-level effect because it does not account for potential correlations
between different students in the same school.

To gain deeper insights into the behavior of non-cluster robust forests, we tried a 5-fold version
of this algorithm where the forests themselves are not cluster-robust, but the estimation folds are
cluster aligned. Specifically, we split the clusters into 5 folds; then, for each fold, we fit a causal
forest without clustering on observations belonging to clusters in the 4/5 other folds, and made
CATE estimates on the held out fold. Finally, re-running a best linear prediction test on out-of-fold
predictions as in the test_calibration function, we found at best tenuous evidence for the presence
of heterogeneity (in fact, the resulting ¢-statistic for heterogeneity, 0.058, was weaker than the one
in Section 2.2). In other words, if we use evaluation methods that are robust to clustering, then the
apparent gains from non-cluster-robust forests wash away.

Thus, it appears that different schools have very different values of 7;; however, most of the
school-wise effects appear to be idiosyncratic, and cannot be explained using covariates. In order to
gain insights that generalize to new schools we need to cluster by school; and, once we do so, much
of the apparent heterogeneity between schools ends up looking like noise.

cf.noclust = causal_forest(X[,selected.idx], Y, Z,
Y.hat = Y.hat, Z.hat = Z.hat,
tune.parameters = TRUE)

ATE .noclust = average_treatment_effect(cf.noclust)

> "957% CI for the ATE: 0.253 +/- 0.022"

test_calibration(cf.noclust)

> Estimate Std. Error t value Pr(>|t])

> mean.prediction 1.003796 0.044779 22.4164 < 2.2e-16 **x
> differential.prediction 0.634163 0.132700 4.7789 1.786e-06 **x

3.2 The value of orthogonalization

In this dataset, orthogonalization appears to be less important than clustering. If we train a causal
forests without estimating the propensity score or, more specifically, using the trivial propensity
model é(X;) = Z =n"1Y."" | Z;, we uncover essentially the same average treatment effect estimate
as with orthogonalization. Moreover, as shown in Figure 5, the causal forests trained with or without
orthogonalization yield essentially the same CATE estimates %(’i)(XZ-).

One reason for this phenomenon may be that, here, the most important confounders are also
important for predicting Y: In Algorithm 1, the most important predictor for both the Z- and
Y-forests is 83, with 22% of splits and 70% of splits respectively (both weighted by depth as in
the variable_importance function). Meanwhile, as argued in Belloni et al. (2014), orthogonaliza-
tion is often most important when there are some features that are highly predictive of treatment
propensities but not very predictive of Y. Thus, it is possible that the non-orthogonalized forest
does well here because we were lucky, and there were no confounders that only had a strong effect
the propensity model.

To explore this hypothesis, we present a synthetic example where some variables have stronger
effects on Z than on Y and see that, as expected, orthogonalization is now important. There is
clearly no treatment effect, yet the non-orthogonalized forest appears to find a non-zero effect.
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Figure 4: Panel (a) is a histogram of CATE estimates 7(~% (X;) trained using a causal forest that
does not account for school-level clustering. Panel (b) compares per-student predictions 7% (X;)
from a non-cluster-robust causal forest to per-school mean treatment effect predictions from a forest
trained on per-school responses as in Section 2.4.
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Figure 5: Comparison of estimates from a forest trained with a trivial propensity model

é(X;) =Z =n"'>"" | Z; to predictions from the forest trained as in Algorithm 1.
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cf.noprop = causal_forest(X[,selected.idx], Y, Z,
Y.hat = Y.hat, Z.hat = mean(Z),
tune.parameters = TRUE,
samples_per_cluster = 50,
clusters = school.id)

ATE .noprop = average_treatment_effect (cf.noprop)

> "95% CI for the ATE: 0.253 +/- 0.04"

.synth = 1000; p.synth = 10

.synth = matrix(rnorm(n.synth * p.synth), n.synth, p.synth)
.synth = rbinom(n.synth, 1, 1 / (1 + exp(-X.synth[,1]1)))
.synth 2 * rowMeans (X.synth[,1:6]) + rnorm(n.synth)

< N X B

cf.synth = causal_forest(X.synth, Y.synth, Z.synth,
Y.hat = Y.hat.synth, Z.hat = Z.hat.synth)

ATE.synth = average_treatment_effect (cf.synth)

> "95% CI for the ATE: 0.125 +/- 0.151"

cf.synth.noprop = causal_forest(X.synth, Y.synth, Z.synth,

Y.hat = Y.hat.synth, Z.hat = mean(Z.synth))
ATE.synth.noprop = average_treatment_effect(cf.synth.noprop)
> "95% CI for the ATE: 0.220 +/- 0.142"

4. Discussion

We applied causal forests to study treatment heterogeneity on a dataset derived from the National
Study of Learning Mindsets. Two challenges in this setting involved an observational study design
with unknown treatment propensities, and clustering of outcomes at the school level. Causal forests
allow for an algorithmic specification that addresses both challenges. Of these two challenges, school-
level clustering had a dramatic effect on our analysis. If we properly account for the clustering, we
find hints of the presence of treatment heterogeneity (Section 2.3), but accurate non-parametric
estimation of 7(x) is difficult (Section 2.2). In contrast, an analysis that ignores clusters claims to
find very strong heterogeneity in 7(z) that can accurately be estimated (Section 3.1).

This result highlights the need for a deeper discussion of the how to work with clustered observa-
tions when modeling treatment heterogeneity. The traditional approach is to capture cluster effects
via “fixed effect” or “random effect” models of the form

Yi = m(X;) + Zim(Xi) + Ba, + Ziva, + i, 9)

where A; € {1, ..., J} denotes the cluster membership of the i-th sample whereas 8; and 7, denote
per-cluster offsets on the main effect and treatment effect respectively, and the nomenclature around
fixed or random effects reflects modeling choices for § and v (Wooldridge, 2010). In a non-parametric
setting, however, assuming that clusters have an additive effect on Y; seems rather restrictive. The
approach we took in this note can be interpreted as fitting a functional random effects model

Y; = ma,(X;) + Zita,(X;) + &, 7(x) =E[r;(z)], (10)

where each cluster has its own main and treatment effect function, and the expectation above is
defined with respect to the distribution of per-cluster treatment effect functions. It would be of
considerable interest to develop a better understanding of the pros and cons of different approaches
to heterogeneous treatment effect estimation on clustered data.
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