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In this paper we propose methods for estimating heterogeneity in
causal effects in experimental and observational studies and for
conducting hypothesis tests about the magnitude of differences in
treatment effects across subsets of the population. We provide a
data-driven approach to partition the data into subpopulations
that differ in the magnitude of their treatment effects. The approach
enables the construction of valid confidence intervals for treatment
effects, even with many covariates relative to the sample size, and
without “sparsity” assumptions.We propose an “honest” approach to
estimation, whereby one sample is used to construct the partition and
another to estimate treatment effects for each subpopulation. Our
approach builds on regression tree methods, modified to optimize for
goodness of fit in treatment effects and to account for honest esti-
mation. Our model selection criterion anticipates that bias will be
eliminated by honest estimation and also accounts for the effect of
making additional splits on the variance of treatment effect estimates
within each subpopulation. We address the challenge that the
“ground truth” for a causal effect is not observed for any individual
unit, so that standard approaches to cross-validation must be modi-
fied. Through a simulation study, we show that for our preferred
method honest estimation results in nominal coverage for 90% con-
fidence intervals, whereas coverage ranges between 74% and 84%
for nonhonest approaches. Honest estimation requires estimating
the model with a smaller sample size; the cost in terms of mean
squared error of treatment effects for our preferred method ranges
between 7–22%.

heterogeneous treatment effects | causal inference | cross-validation |
supervised machine learning | potential outcomes

In this paper we study two closely related problems: first, esti-
mating heterogeneity by covariates or features in causal effects

in experimental or observational studies, and second, conducting
inference about the magnitude of the differences in treatment
effects across subsets of the population. Causal effects, in the
Rubin causal model or potential outcome framework we use here
(1–3), are comparisons between outcomes we observe and coun-
terfactual outcomes we would have observed under a different
regime or treatment. We introduce data-driven methods that se-
lect subpopulations to estimate treatment effect heterogeneity
and to test hypotheses about the differences between the effects
in different subpopulations. For experiments, our method allows
researchers to identify heterogeneity in treatment effects that was
not specified in a preanalysis plan, without concern about inva-
lidating inference due to searching over many possible partitions.
Our approach is tailored for applications where there may be

many attributes of a unit relative to the number of units observed,
and where the functional form of the relationship between treat-
ment effects and the attributes of units is not known. The super-
vised machine learning literature (e.g., ref. 4) has developed a
variety of effective methods for a closely related problem, the
problem of predicting outcomes as a function of covariates in
similar environments. The most popular approaches [e.g., re-
gression trees (5), random forests (6), LASSO (7), support vector
machines (8), etc.] entail building a model of the relationship
between attributes and outcomes, with a penalty parameter that
penalizes model complexity. Cross-validation is often used to se-
lect the optimal level of complexity (the one that maximizes pre-
dictive power without “overfitting”).

Within the prediction-based machine learning literature, re-
gression trees differ from most other methods in that they pro-
duce a partition of the population according to covariates,
whereby all units in a partition receive the same prediction. In
this paper, we focus on the analogous goal of deriving a partition
of the population according to treatment effect heterogeneity,
building on standard regression trees (5, 6). Whether the ulti-
mate goal in an application is to derive a partition or fully per-
sonalized treatment effect estimates depends on the setting;
settings where partitions may be desirable include those where
decision rules must be remembered, applied, or interpreted by
human beings or computers with limited processing power or
memory. Examples include treatment guidelines to be used by
physicians or even online personalization applications where
having a simple lookup table reduces latency for the user. We
show that an attractive feature of focusing on partitions is that
we can achieve nominal coverage of confidence intervals for
estimated treatment effects even in settings with a modest number
of observations and many covariates. Our approach has applica-
bility even for settings such as clinical trials of drugs with only a
few hundred patients, where the number of patient characteristics
is potentially quite large. Our method may also be viewed as a
complement to the use of “preanalysis plans” where the researcher
must commit in advance to the subgroups that will be considered.
It enables researchers to let the data discover relevant subgroups
while preserving the validity of confidence intervals constructed
on treatment effects within subgroups.
A first challenge for our goal of finding a partition and then

testing hypotheses about treatment effects is that many existing
machine learning methods cannot be used directly for con-
structing confidence intervals. This is because the methods are
“adaptive”: They use the training data for model selection, so
that spurious correlations between covariates and outcomes af-
fect the selected model, leading to biases that disappear only
slowly as the sample size grows. In some contexts, additional
assumptions such as “sparsity” (only a few covariates affect the
outcomes) can be applied to guarantee consistency or asymptotic
(large sample) normality of predictions (9). In this paper, we use
an alternative approach that places no restrictions on model
complexity, which we refer to as “honesty.” We say that a model
is “honest” if it does not use the same information for selecting
the model structure (in our case, the partition of the covariate
space) as for estimation given a model structure. We accomplish
this by splitting the training sample into two parts, one for con-
structing the tree (including the cross-validation step) and a
second for estimating treatment effects within leaves of the tree.
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Honesty has the implication that the asymptotic properties of
treatment effect estimates within the partitions are the same as if
the partition had been exogenously given. Although there is a
loss of precision due to sample splitting (which reduces sample
size in each step of estimation), there is a benefit in terms of
eliminating bias that offsets at least part of the cost.
A key contribution of this paper is to show that criteria for

both constructing the partition and cross-validation change when
we anticipate honest estimation. In the first stage of estimation,
the criterion is the expectation of the mean squared error (MSE)
when treatment effects are reestimated in the second stage.
Crucially, we anticipate that second-stage estimates of treatment
effects will be unbiased in each leaf, because they will be per-
formed on an independent sample. In that case, splitting and
cross-validation criteria are adjusted to ignore systematic bias in
estimation and focus instead on the tradeoff between more tai-
lored prediction (smaller leaf size) and the variance that will
arise in the second (honest estimation) stage due to noisy esti-
mation within small leaves.
A second and perhaps more fundamental challenge to apply-

ing machine learning methods such as regression trees (5) off-
the-shelf to the problem of causal inference is that regularization
approaches based on cross-validation typically rely on observing
the “ground truth,” that is, actual outcomes in a cross-validation
sample. However, if our goal is to minimize the MSE of treatment
effects, we encounter what Holland (2) calls the “fundamental
problem of causal inference”: The causal effect is not observed for
any individual unit, and so we do not directly have a ground truth.
We address this by proposing approaches for constructing un-
biased estimates of the MSE of the causal effect of the treatment.
Using theoretical arguments and a simulation exercise, we

compare our approach with previously proposed ones. Relative
to approaches that focus on goodness of fit in model selection,
our approach yields substantial improvements in the MSE of
treatment effects (ranging from 43% to 210%). We also examine
the costs and benefits of honest estimation relative to adaptive
estimation. In the settings we consider, honest estimation leads to
approximately nominal coverage of confidence intervals across
estimation methods and settings, whereas for adaptive estimation
approaches coverage can be as low as 69%. The cost of honest
estimation in terms of MSE of treatment effects (where for
adaptive estimation, we have a larger sample size available for
training) ranges from 7% to 22% for our preferred model.

The Problem
Setup. We consider a setup where there are N units, indexed by
i= 1, . . . ,N. We postulate the existence of a pair of potential
outcomes for each unit, ðYið0Þ,Yið1ÞÞ, following the potential out-
come or Rubin causal model (1–3), with the unit-level causal effect
defined as the difference in potential outcomes, τi =Yið1Þ−Yið0Þ.
LetWi ∈ f0,1g be the binary indicator for the treatment, withWi = 0
indicating that unit i received the control treatment and Wi = 1 in-
dicating that unit i received the active treatment. The realized
outcome for unit i is the potential outcome corresponding to the
treatment received:

Y obs
i =YiðWiÞ=

�
Yið0Þ if  Wi = 0,
Yið1Þ if  Wi = 1.

Let Xi be a K-component vector of features, covariates, or pre-
treatment variables, known not to be affected by the treatment.
Our data consist of the triple ðY obs

i ,Wi,XiÞ, for i= 1, . . . ,N, which
are regarded as an independent and identically distributed sample
drawn from a large population. Expectations and probabilities will
refer to the distribution induced by the random sampling, or by the
(conditional) random assignment of the treatment. We assume that
observations are exchangeable, and that there is no interference

[the stable unit treatment value assumption (10)]. This assumption
may be violated in settings where some units are connected through
networks. Let p= prðWi = 1Þ be the marginal treatment probability,
and let eðxÞ= prðWi = 1jXi = xÞ be the conditional treatment prob-
ability (the “propensity score” as defined by ref. 11). In a random-
ized experiment with constant treatment assignment probabilities
eðxÞ= p for all values of x.

Unconfoundedness. Throughout the paper, we maintain the as-
sumption of randomization conditional on the covariates, or
“unconfoundedness” (11), formalized as given below.

Assumption 1 (Unconfoundedness).

Wi╨ðYið0Þ,Yið1ÞÞj  Xi,

using the symbol ╨ to denote (conditional) independence of two
random variables. This assumption is satisfied in a randomized ex-
periment without conditioning on covariates but also may be justified
in observational studies if the researcher is able to observe all of the
variables that affect the unit’s receipt of treatment and are associated
with the potential outcomes.
To simplify exposition, in the main body of the paper we main-

tain the stronger assumption of complete randomization, whereby
Wi╨ðYið0Þ,Yið1Þ,XiÞ. Later, we show that by using propensity score
weighting (1) we can adapt all of the methods to that case.

Conditional Average Treatment Effects and Partitioning. Define the
conditional average treatment effect

τðxÞ≡E½Yið1Þ−Yið0ÞjXi = x�.
A large part of the causal inference literature (e.g., refs. 3 and

12–14) is focused on estimating the population (marginal) av-
erage treatment effect E½Yið1Þ−Yið0Þ�. The main focus of the
current paper is on obtaining accurate estimates of and infer-
ences for the conditional average treatment effect τðxÞ. We are
interested in estimators τ̂ð·Þ [in general we use the ·̂ symbol to
denote estimators for a population quantity—in this case τðxÞ]
that are based on partitioning the feature space and do not vary
within the partitions.

Honest Inference for Population Averages
Our approach departs from conventional classification and re-
gression trees (CART) in two fundamental ways. First, we focus
on estimating conditional average treatment effects rather than
predicting outcomes. Conventional regression tree methods are
therefore not directly applicable because we do not observe unit-
level causal effects for any unit. Second, we impose a separation
between constructing the partition and estimating effects within
leaves of the partition, using separate samples for the two tasks, in
what we refer to as honest estimation. We contrast honest estimation
with adaptive estimation used in conventional CART, where the
same data are used to build the partition and estimate leaf effects. In
this section we introduce the changes induced by honest estimation
in the context of the conventional prediction setting; in the next
section we consider causal effects. In the discussion in this section we
observe for each unit i a pair of variables ðYi,XiÞ, with the interest in
the conditional expectation μðxÞ≡E½YijXi = x�.
Setup.We begin by defining key concepts and functions. First, a tree
or partitioning Π corresponds to a partitioning of the feature space
X, with #ðΠÞ the number of elements in the partition. We write

Π=
�
ℓ1, . . . , ℓ#ðΠÞ

�
,   with ∪#ðΠÞ

j=1 ℓj =X.

Let P denote the space of partitions. Let ℓðx;ΠÞ denote the leaf
ℓ∈Π such that x∈ ℓ. Let S be the space of data samples from a
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population. Let π : S↦P be an algorithm that on the basis of a sample
S ∈S constructs a partition. As a very simple example, suppose the
feature space is X= fL,Rg. In this case there are two possible par-
titions, ΠN = fL,Rg (no split) or ΠS = ffLg, fRgg (full split), and so
the space of trees is P= fΠN ,ΠSg= ffL,Rg, ffLg, fRggg. Given a
sample S, the average outcomes in the two subsamples are �YL and
�YR. A simple example of an algorithm is one that splits if the dif-
ference in average outcomes exceeds a threshold c:

πðSÞ=
� ffL, Rgg   if   �YL − �YR ≤ c,
ffLg, fRgg   if   �YL − �YR > c.

The potential bias in leaf estimates from adaptive estimation can
be seen in this simple example. Whereas �YL − �YR is in general an
unbiased estimator for the difference in the population condi-
tional means μðLÞ− μðRÞ, if we condition on finding that �YL −
�YR ≥ c in a particular sample, we expect that �YL − �YR is larger
than the population analog.
Given a partition Π, define the conditional mean function

μðx;ΠÞ as

μðx;ΠÞ≡E½YijXi ∈ ℓðx;ΠÞ�=E½μðXiÞjXi ∈ ℓðx;ΠÞ�,

which can be viewed as a step-function approximation to μðxÞ.
Given a sample S the estimated counterpart is

μ̂ðx;S,ΠÞ≡ 1
#ði∈S :Xi ∈ ℓðx;ΠÞÞ

X
i∈S:Xi∈ℓðx;ΠÞ

Yi,

which is unbiased for μðx;ΠÞ. We index this estimator by the
sample because we need to be precise about which sample is
used for estimation of the regression function.

The Honest Target. A central concern in this paper is the criterion
used to compare alternative estimators; following much of the
literature, we focus on MSE criteria, but we will modify these
criteria in a variety of ways.
For the prediction case, we adjust the MSE by E½Y 2

i �; because
this does not depend on an estimator, subtracting it does not
affect how the criterion ranks estimators. Given a partition Π,
define the MSE, where we average over a test sample Ste and the
conditional mean is estimated on an estimation sample Sest, as

MSEμðSte,Sest,ΠÞ≡ 1
#ðSteÞ

X
i∈Ste

n
ðYi − μ̂ðXi;Sest,ΠÞÞ2 −Y 2

i

o
.

The (adjusted) expectedMSE is the expectation ofMSEμðSte,Sest,ΠÞ
over test and estimation samples:

EMSEμðΠÞ≡ESte,Sest

�
MSEμðSte,Sest,ΠÞ�,

where the test and estimation samples are independent. In the
algorithms we consider, we will consider a variety of estimators
for the (adjusted) EMSE, all of which take the form of MSE
estimators MSEμðSte,Sest,ΠÞ, evaluated at the units in sample
Ste, with the estimates based on sample Sest and the tree Π. For
brevity in this paper we will henceforth omit the term “adjusted”
and abuse terminology slightly by referring to these objects as
MSE functions.
Our ultimate goal is to construct and assess algorithms πð·Þ

that maximize the honest criterion

QHðπÞ≡ −ESest ,Sest,Str

�
MSEμðSte,Sest, πðStrÞÞ�.

Note that throughout the paper we focus on maximizing criterion
functions, which typically involve the negative of MSE expressions.

The Adaptive Target. In the conventional CART approach the
target is slightly different:

QCðπÞ≡ −ESte,Str

�
MSEμðSte,Str, πðStrÞÞ�,

where the same training sample is used to construct and estimate
the tree. Compared with our target QHðπÞ the difference is that in
our approach different samples Str and Sest are used for construction
of the tree and estimation of the conditional means, respectively.
We refer to the conventional CART approach as adaptive and

to our approach as honest. In practice there will be costs and
benefits of the honest approach relative to the adaptive approach.
The cost is sample size; given a dataset, putting some data in the
estimation sample leaves fewer units for the training dataset,
leading to higher expected MSE. The advantage of honest esti-
mation is that it avoids a problem of adaptive estimation, which is
that spurious extreme values of Yi are likely to be placed into the
same leaf as other extreme values by the algorithm πð·Þ, and thus
the sample means (in sample Str) of the elements of πðStrÞ are
more extreme than they would be in an independent sample. This
shows up in the poor coverage properties of confidence intervals
for adaptive estimation methods relative to the honest methods.

The Implementation of CART. There are two distinct parts of the
conventional CART algorithm, initial tree building and cross-
validation to select a complexity parameter used for pruning. Each
part of the algorithm relies on a criterion function based on MSE.
In this paper we will take as given the overall structure of the
CART algorithm (e.g., refs. 4 and 5), and our focus will be on
modifying the criteria.
In the tree-building phase, CART recursively partitions the

observations of the training sample. For each leaf, the algorithm
evaluates all candidate splits of that leaf (which induce alterna-
tive partitions Π) using a “splitting” criterion that we refer to as
the “in-sample” goodness-of-fit criterion −MSEμðStr,Str,ΠÞ.
It is well understood that the conventional criterion leads to

overfitting, a problem that is solved by cross-validation to select a
penalty on tree depth. The in-sample goodness-of-fit criterion
will always improve with additional splits, even though additional
refinements of a partition Π might in fact increase the expected
MSE, especially when the leaf sizes become small. The reason is
that the criterion ignores the fact that smaller leaves lead to
higher-variance estimates of leaf means. To account for this
factor, the conventional approach to avoiding overfitting is to
add a penalty term to the criterion that is equal to a constant
times the number of splits, so that essentially we only consider
splits where the improvement in a goodness-of-fit criterion is
above some threshold. The penalty term is chosen to maximize a
goodness-of-fit criterion in cross-validation samples. In the con-
ventional cross-validation the training sample is repeatedly split into
two subsamples, the Str,tr sample that is used to build a new tree as
well as estimate the conditional means and the Str,cv sample that is
used to evaluate the estimates. We “prune” the tree using a penalty
parameter that represents the cost of a leaf. We choose the optimal
penalty parameter by evaluating the trees associated with each
value of the penalty parameter. The goodness-of-fit criterion for
cross-validation can be written as −MSEμðStr,cv,Str,tr,ΠÞ. Note that
the cross-validation criterion directly addresses the issue we high-
lighted with the in-sample goodness-of-fit criterion, because Str,cv is
independent of Str,tr, and thus too-extreme estimates of leaf means
will be penalized. The issue that smaller leaves lead to noisier es-
timates of leaf means is implicitly incorporated by the fact that a
smaller leaf penalty will lead to deeper trees and thus smaller
leaves, and the noisier estimates will lead to larger average MSE
across the cross-validation samples.

Honest Splitting. In our honest estimation algorithm, we modify
CART in two ways. First, we use an independent sample Sest
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instead of Str to estimate leaf means. Second (and closely re-
lated), we modify our splitting and cross-validation criteria to
incorporate the fact that we will generate unbiased estimates
using Sest for leaf estimation (eliminating one aspect of over-
fitting), where Sest is treated as a random variable in the tree
building phase. We explicitly incorporate the fact that finer
partitions generate greater variance in leaf estimates.
To begin developing our criteria, let us expand EMSEμðΠÞ:

−EMSEμðΠÞ=−EðYi ,XiÞ,Sest

h
ðYi − μðXi;ΠÞÞ2 −Y 2

i

i
−EXi ,Sest

h
ðμ̂ðXi;Sest,ΠÞ− μðXi;ΠÞÞ2

i
=EXi

�
μ2ðXi;ΠÞ

�
−ESest ,Xi

V
�
μ̂2ðXi;Sest,ΠÞ ,

��
where we exploit the equality ES½μ̂ðx;S,ΠÞ�= μðx;ΠÞ.
We wish to estimate −EMSEμðΠÞ on the basis of the training

sample Str and knowledge of the sample size of the estimation
sample Nest. To construct an estimator for the second term, observe
that within each leaf of the tree there is an unbiased estimator for
the variance of the estimated mean in that leaf. Specifically, to es-
timate the variance of μ̂ðx;Sest,ΠÞ on the training sample we can use

V̂ðμ̂ðx;Sest,ΠÞÞ≡ S2Strðℓðx;ΠÞÞ
Nestðℓðx;ΠÞÞ,

where S2StrðℓÞ is the within-leaf variance, to estimate the variance.
We then weight this by the leaf shares pℓ to estimate the expected
variance. Assuming the leaf shares are approximately equal in
the estimation and training samples, we can approximate this
variance estimator by

Ê

h
V
�
μ̂2ðXi;Sest,ΠÞ��i∈Ste

i
≡

1
Nest ·

X
ℓ∈Π

S2StrðℓÞ.

To estimate the average of the squared outcome μ2ðx;ΠÞ (the
first term of the target criterion), we can use the square of the
estimated means in the training sample μ̂2ðx;Str,ΠÞ, minus an
estimate of its variance,

Ê
�
μ2ðx;ΠÞ�= μ̂2ðx;Str,ΠÞ− S2Strðℓðx;ΠÞÞ

Ntrðℓðx;ΠÞÞ.

Combining these estimators leads to the following unbiased
estimator for EMSEμðΠÞ:

−bEMSEμðStr,Nest,ΠÞ≡ 1
Ntr

X
i∈Str

μ̂2ðXi;Str,ΠÞ

−
	

1
Ntr +

1
Nest



·
X
ℓ∈Π

S2Strðℓðx;ΠÞÞ.

Comparing this to the criterion used in the conventional
CART algorithm, which can be written as

−MSEμðStr,Str,ΠÞ= 1
Ntr

X
i∈Str

μ̂2ðXi;Str,ΠÞ,

the difference comes from the terms involving the variance. For
a given x, S2Strðℓðx;ΠÞÞ is proportional to the MSE within the
associated leaf; thus, the difference between the adaptive and
honest criteria is how the within-leaf MSE is weighted, where
the honest criterion penalizes small leaf size.

Honest Cross-Validation. Even thoughbEMSEμðStr,Nest,ΠÞ is ap-
proximately unbiased as an estimator of our ideal criterion

EMSEμðΠÞ for a fixed Π, it is not unbiased when we use it re-
peatedly to evaluate splits using recursive partitioning on the
training data Str. The reason is that initial splits tend to group
together observations with similar, extreme outcomes. So, after
the training data have been divided once, the sample variance of
observations in the training data within a given leaf is on aver-
age lower than the sample variance would be in a new, inde-
pendent sample. Thus,bEMSEμðStr,Nest,ΠÞ is likely to overstate
goodness of fit as we grow a deeper and deeper tree, implying
that cross-validation can still play an important role with our
honest estimation approach, although perhaps less so than in
the conventional CART.
Because the conventional CART cross-validation criterion

does not account for honest estimation we consider the analog of
our unbiased estimate of the criterion, which accounts for honest
estimation by evaluating a partition Π using only outcomes for
units from the cross-validation sample Str,cv:

−bEMSEμðStr,cv,Nest,ΠÞ.

This estimator for the honest criterion is unbiased for fixed Π,
although it may have higher variance than MSEμðStr,cv,Str,tr,ΠÞ
due to the small sample size of the cross-validation sample. Note
that when we apply the formula forbEMSEμ in this case, we re-
place Ntr with Ntr,cv.

Honest Inference for Treatment Effects
In this section we change the focus to estimating conditional av-
erage treatment effects instead of estimating conditional pop-
ulation means. We refer to the estimators developed in this section
as “causal tree” (CT) estimators.
The setting with treatment effects creates some specific

problems because we do not observe the value of the treatment
effect whose conditional mean we wish to estimate. This com-
plicates the calculation of the criteria we introduced in the
previous section. However, a key point of this paper is that we
can estimate these criteria and use those estimates for splitting
and cross-validation.
We now observe in each sample the triple ðY obs

i ,Xi,WiÞ. For a
sample S let Streat and Scontrol denote the subsamples of treated
and control units, respectively, with cardinality Ntreat and Ncontrol,
respectively, and let p=Ntreat=N be the share of treated units.
The concept of a tree remains the same as in the previous sec-
tion. Given a tree Π, define for all x and both treatment levels w
the population average outcome

μðw, x;ΠÞ≡E½YiðwÞjXi ∈ ℓðx;ΠÞ�,

and the average causal effect

τðx;ΠÞ≡E½Yið1Þ−Yið0ÞjXi ∈ ℓðx;ΠÞ�= μð1, x;ΠÞ− μð0, x;ΠÞ.

The estimated counterparts are

μ̂ðw, x;S,ΠÞ≡ 1
#ðfi∈Sw :Xi ∈ ℓðx;ΠÞgÞ

X
i∈Sw :Xi∈ℓðx;ΠÞ

Y obs
i ,

τ̂ðx;S,ΠÞ≡ μ̂ð1, x;S,ΠÞ− μ̂ð0, x;S,ΠÞ.

Define the MSE for treatment effects as

MSEτðSte,Sest,ΠÞ≡ 1
#ðSteÞ

X
i∈Ste

n
ðτi − τ̂ðXi;Sest,ΠÞÞ2 − τ2i

o
,

and define EMSEτðΠÞ to be its expectation over the estimation
and test samples,
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EMSEτðΠÞ≡ESte,Sest ½MSEτðSte,Sest,ΠÞ�.

A key challenge is that, in contrast to MSEμðSte,Sest,ΠÞ, the
workhorse MSE function MSEτðSte,Sest,ΠÞ is infeasible, be-
cause we do not observe τi. However, we show below that we can
estimate it.

Modifying Conventional CART for Treatment Effects. Consider first
modifying conventional (adaptive) CART to estimate hetero-
geneous treatment effects. Note that in the prediction case, using
the fact that μ̂ is constant within each leaf, we can write

MSEμðSte,Str,ΠÞ=−
2
Ntr

X
i∈Ste

μ̂ ðXi;Ste,ΠÞ · μ̂ðXi;Str,ΠÞ

+
1
Ntr

X
i∈S

μ̂2ðXi;Str,ΠÞ.

In the treatment effect case we can use the fact that

ESte ½τiji∈Ste : i∈ ℓðx,ΠÞ�=ESte ½τ̂ðx;Ste,ΠÞ�

to construct an unbiased estimator of MSEτðSte,Str,ΠÞ:

dMSE τ
ðSte,Str,ΠÞ≡−

2
Ntr

X
i∈Ste

τ̂ ðXi;Ste,ΠÞ · τ̂ðXi;Str,ΠÞ

+
1
Ntr

X
i∈Ste

τ̂2ðXi;Str,ΠÞ.

This leads us to propose, by analogy to CART’s in-sample MSE
criterion −MSEμðStr,Str,ΠÞ,

− dMSEτðStr,Str,ΠÞ= 1
Ntr

X
i∈Str

τ̂2ðXi;Str,ΠÞ,

as an estimator for the infeasible in-sample goodness-of-fit
criterion. For cross-validation we used in the prediction case
−MSEμðStr,cv,Str,tr,ΠÞ. Again, the treatment effect analog is in-
feasible, but we can use an unbiased estimate of it, which leads to
− dMSEτðStr,cv,Str,tr,ΠÞ.
Modifying the Honest Approach. The honest approach described in
the previous section for prediction problems also needs to be
modified for the treatment effect setting. Using the same expan-
sion as before, now applied to the treatment effect setting, we find

−EMSEτðΠÞ=EXi

�
τ2ðXi;ΠÞ

�
−ESest, Xi

V
�
τ̂2ðXi;Sest,ΠÞ .

��
For splitting we can estimate both components of this expecta-
tion using only the training sample, yielding an estimator for the
infeasible criterion that depends only on Str and Nest:

−bEMSEτðStr,Nest,ΠÞ≡ 1
Ntr

X
i∈Str

τ̂2ðXi;Str,ΠÞ

−
	

1
Ntr +

1
Nest



·
X
ℓ∈Π

 
S2Str

treat
ðℓÞ

p
+
S2Str

control
ðℓÞ

1− p

!
.

For cross-validation we use the same expression, now with the
cross-validation sample: −bEMSEτðStr,cv,Nest,ΠÞ.
These expressions are directly analogous to the criteria we

proposed for the honest version of CART in the prediction case.
The criteria reward a partition for finding strong heterogeneity
in treatment effects and penalize a partition that creates variance

in leaf estimates. One difference is that in the prediction case the
two terms both tend to select features that predict heterogeneity
in outcomes, whereas for the treatment effect case the two terms
reward different types of features. It is possible to reduce the
variance of a treatment effect estimator by introducing a split,
even if both child leaves have the same average treatment effect,
if a covariate affects the mean outcome but not treatment effects.
In such a case, the split results in more homogeneous leaves, and
thus lower-variance estimates of the means of the treatment group
and control group outcomes. Thus, the distinction between
adaptive and honest splitting criterion will be more pronounced
for treatment effect estimation. As in the prediction case, the
cross-validation criterion estimates treatment effects within leaves
using the Str,cv sample rather than Str,tr.

Four Partitioning Estimators for Causal Effects
In this section we briefly summarize our CT estimator and then
describe three alternative types of estimators. We compare CT to
the alternatives theoretically and through simulations. For each
of the four types there is an adaptive version and an honest
version, where the latter takes into account that estimation will
be done on a sample separate from the sample used for con-
structing the partition, leading to a total of eight estimators.
Note that further variations are possible; one could use adaptive
splitting and cross-validation methods to construct a tree but still
perform honest estimation on a separate sample. We do not
consider such variations.

CTs. The discussion above developed our preferred estimator,
CTs. To summarize, for the adaptive version of CTs, denoted
CT-A, we use for splitting the objective − dMSEτðStr,Str,ΠÞ. For
cross-validation we use the same objective function, but evaluated
at the samples Str,cv and Str,tr, namely − dMSEτðStr,cv,Str,tr,ΠÞ. For
the honest version, CT-H, the splitting objective function is
−bEMSEτðStr,Nest,ΠÞ. For cross-validation we use the same ob-
jective function, but now evaluated at the cross-validation sample,
−bEMSEτðStr,cv,Nest,ΠÞ.
Transformed Outcome Trees. Our first alternative method is based
on the insight that by using a transformed version of the outcome
Y p
i =Yi · ðWi − pÞ=ðp · ð1− pÞÞ it is possible to use off-the-shelf

regression tree methods to focus splitting and cross-validation
on treatment effects rather than outcomes. Similar approaches
are used in refs. 15–18. Because E½Y p

i

��Xi = x�= τðxÞ, off-the-shelf
CART methods can be used directly, where estimates of the
sample average of Y p

i within each leaf can be interpreted as es-
timates of treatment effects. This ease of application is the key
attraction of this method. The main drawback (relative to CT-A)
is that in general it is not efficient because it does not use the
information in the treatment indicator beyond the construction
of the transformed outcome. For example, the sample average in
S of Y p

i within a given leaf ℓðx;ΠÞ will only be equal to τ̂ðx;Π,SÞ if
the fraction of treated observations within the leaf is exactly
equal to p. Because this method is primarily considered as a
benchmark, in simulations we focus only on an adaptive version
that can use existing learning methods entirely off-the-shelf. The
adaptive version of the transformed outcome tree (TOT) esti-
mator we consider, TOT-A, uses the conventional CART algo-
rithm with the transformed outcome replacing the original
outcome. The honest version, TOT-H, uses the same splitting
and cross-validation criteria, so that it builds the same trees; it
differs only in that a separate estimation sample is used to
construct the leaf estimates. The treatment effect estimator
within a leaf is the same as the adaptive method, that is, the
sample mean of Y p

i within the leaf.

Fit-Based Trees. We consider two additional alternative methods
for constructing trees, based on suggestions in the literature. In
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the first of these alternatives the choice of which feature to split
on, and at what value of the feature to split, is based on com-
parisons of the goodness of fit (F) of the outcome rather than the
treatment effect. In standard CART of course goodness of fit of
outcomes is also the split criterion, but here we estimate a model
for treatment effects within each leaf. Specifically, we have a linear
model with an intercept and an indicator for the treatment as the
regressors, rather than only an intercept as in standard CART.
This approach is used in Zeileis et al. (19), who consider building
general models at the leaves of the trees. Treatment effect esti-
mation is a special case of their framework. Zeileis et al. (19)
propose using statistical tests based on improvements in goodness
of fit to determine when to stop growing the tree, rather than
relying on cross-validation, but for ease of comparison with
CART, in this paper we will stay closer to traditional CART in
terms of growing deep trees and pruning them. We modify the
MSE function:

MSEμ,W ðSte,Sest,ΠÞ≡
X
i∈Ste

��
Y obs
i − μ̂wðWi,Xi;Sest,ΠÞ�2 −Y 2

i


.

For the adaptive version F-A we follow conventional CART,
using the criterion −MSEμ,W in place of −MSEμ (that is, using
−MSEμ,W ðStr,Str,ΠÞ for splitting and −MSEμ,W ðStr,cv,Str,tr,ΠÞ
for cross-validation). For the honest version we use the analog
of −bEMSEμðStr,Nest,ΠÞ, with μ̂w in place of μ̂, for training, and
the same function evaluated at ðStr,cv,Nest,ΠÞ for cross-validation.
To highlight the disadvantages of the F approach, consider a case
where two splits improve the fit to an equal degree. In one case,
the split leads to variation in average treatment effects, and in the
other case it does not. The first split would be better from
the perspective of estimating heterogeneous treatment effects,
but the fit criterion would view the two splits as equally attractive.

Squared T-Statistic Trees. For the last estimator we look for splits
with the largest value for the square of the t-statistic (TS) for
testing the null hypothesis that the average treatment effect is
the same in the two potential leaves. This estimator was pro-
posed by Su et al. (20). If the two leaves are denoted L (Left) and
R (Right), the square of the t-statistic is

T2 ≡N ·

�
�YL − �YR

�2
S2=NL + S2=NR

,

where S2 is the conditional sample variance given the split. At
each leaf, successive splits are determined by selecting the split
that maximizes T2. The concern with this criterion is that it
places no value on splits that improve the fit, even though our
characterization of EMSEτ shows that improving fit has value
through reduction of the variance of leaf estimates. Both the
adaptive and honest versions of the TS approach use T2 as the
splitting criterion. For cross-validation and pruning, it is less
obvious how to proceed. Zeileis et al. (19) suggest that when
using a statistical test for splitting, if it is desirable to grow deep
trees and then cross-validate to determine depth, then one can
use a standard goodness-of-fit measure for pruning and cross-
validation. However, this could undermine the key advantage of
TS, to focus on heterogeneous treatment effects. For this reason,
we instead propose to use the CT-A and CT-H criteria for cross-
validation for TS-A and TS-H, respectively.

Comparison of the CTs, the F Criterion, and the TS Criterion. It is
useful to compare our proposed criterion to the F and TS criteria
in a simple setting to gain insight into the relative merits of the
three approaches. We do so here focusing on a decision whether
to proceed with a single possible split, based on a binary covariate

Xi ∈ fL,Rg. Let ΠN and ΠS denote the trees without and with the
split, and let �Yw, �YLw and �YRw denote the average outcomes for
units with treatment status Wi =w. Let Nw, NLw, and NRw be
the sample sizes for the corresponding subsamples. Let S2 be the
sample variance of the outcomes given a split, and let ~S

2
be the

sample variance without a split. Define the squared t-statistics for
testing that the average outcomes for control (treated) units in
both leaves are identical:

T2
0 ≡

�
�YL0 − �YR0

�2
S2=NL0 + S2=NR0

,   T2
1 ≡

�
�YL1 − �YR1

�2
S2=NL1 + S2=NR1

.

Then, we can write the improvement in goodness of fit from
splitting the single leaf into two leaves as

F = ~S
2
·

2 ·
�
T2
0 +T2

1

�
1+ 2 ·

�
T2
0 +T2

1

��
N
.

Ignoring degrees-of-freedom corrections, the change in our
proposed criterion for the honest version of the CT in this
simple setting can be written as a combination of the F and TS
criteria:

bEMSEτðS,ΠNÞ−bEMSEτðS,ΠSÞ=
�
T2 − 4

��
~S
2
−F=N

�
+ 2~S

2

p · ð1− pÞ .

The CT-H criterion focuses primarily on T2. Unlike TS, however,
it incorporates the benefits of improving fit.

Inference
Given the estimated conditional average treatment effect we also
would like to do inference. Once constructed, the tree is a
function of covariates, and if we use a distinct sample to conduct
inference, then the problem reduces to that of estimating treat-
ment effects in each member of a partition of the covariate
space. For this problem, standard approaches are therefore valid
for the estimates obtained via honest estimation and, in partic-
ular, no assumptions about model complexity are required. As
our simulations below illustrate, for the adaptive methods stan-
dard approaches to confidence intervals are not generally valid
for the reasons discussed above.

A Simulation Study
To assess the relative performance of the proposed algorithms
we carried out a small simulation study with three distinct de-
signs. In Table 1 we report a number of summary statistics from
the simulations. We report averages; results for medians are
similar. We report results for Ntr =Nest with either 500 or 1,000
observations. When comparing adaptive to honest approaches,
we report the ratio of the MSEτ for adaptive estimation with
Ntr = 1,000 to MSEτ for honest estimation with Ntr =Nest = 500,
to highlight the tradeoff between sample size and bias reduction
that arises with honest estimation. We evaluate MSEτ using a test
sample with Nte = 8,000 observations to minimize the sampling
variance.
In all designs the marginal treatment probability is P= 0.5, K

denotes the number of features, we have a model ηðxÞ for the
mean effect and κðxÞ for the treatment effect, and the potential
outcomes are written, for w= 0,1,

YiðwÞ= ηðXiÞ+ 1
2
· ð2w− 1Þ· κðXiÞ+ ei,

where ei ∼Nð0, .01Þ, and the Xi are independent of ei and one
another, and Xi ∼Nð0,1Þ. The designs follow:
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1 :K = 2; ηðxÞ= 1
2
x1 + x2; κðxÞ= 1

2
x1.

2 :K = 10; ηðxÞ= 1
2

X2
k=1

xk +
X6
k=3

xk; κðxÞ=
X2
k=1

1fxk > 0g· xk

3 :K = 20; ηðxÞ= 1
2

X4
k=1

xk +
X8
k=5

xk; κðxÞ=
X4
k=1

1fxk > 0g· xk.

In each design, there are some covariates that affect treatment
effects (κ) and mean outcomes (η), some covariates that enter η
but not κ; and some covariates that do not affect outcomes at all
(“noise” covariates). Design 1 does not have noise covariates. In
designs 2 and 3, the first few covariates enter κ, but only when
their signs are positive, whereas they affect η throughout their
range. Different criterion will thus lead to different optimal
splits, even within a covariate; F will focus more on splits when
the covariates are negative.
The first section of Table 1 compares the number of leaves in

different designs and different values of Ntr =Nest. Recalling
that TOT-A and TOT-H have the same splitting method, we
see that it tends to build shallow trees. The failure to control for
the realized value of Wi leads to additional noise in estimates,
which tends to lead to aggressive pruning. For the TS and CT
estimators, the adaptive versions lead to shallower trees than
the honest versions, because the honest versions anticipate
correcting for bias in leaf estimates and thus prune less; the
main cost of small leaf size is high variance in leaf estimates.
F-A and F-H are very similar; the splitting criteria are similar, and

further, the F estimators are less prone to overfitting treatment
effects, because they split based upon overall model fit. We also
observe that the F estimators build the deepest trees; they reward
splitting on covariates that affect mean outcomes as well as
treatment effects.
The second section of Table 1 examines the performance of

the alternative honest estimators, as evaluated by the infeasible
criterion MSEτ. We report the ratio of the average of MSEτ for a
given estimator to MSEτ for our preferred estimator, CT-H. The
TOT-H estimator performance is within 10% of CT in designs 2
and 3 but suffers in design 1. In design 1, the variance of Yi
conditional on ðWi,XiÞ is very low at 0.01, and so the failure of
TOT to account for the realization of Wi results in a noticeable
loss of performance. The F-H estimator suffers in all three de-
signs; all designs give the F-H criterion attractive opportunities
to split based on covariates that do not enter κ. F-H would
perform better in alternative designs where ηðxÞ= κðxÞ; F-H also
does well at avoiding splits on noise covariates. The TS-H esti-
mator performs well in design 1, where x1 affects η and κ the
same way, so that the CT-H criterion is aligned with TS-H.
Designs 2 and 3 are more complex, and the ideal splits from the
perspective of balancing overall MSE of treatment effects (in-
cluding variance reduction) are different from those favored by
TS-H. Thus, TS performs worse, and the difference is exacer-
bated with larger sample size in design 3, where there are more
opportunities for the estimators to build deeper trees and thus to
make different choices. We also calculate comparisons based on
a feasible criterion, the average squared difference between the
transformed outcome Y p

i and the estimated treatment effect τ̂i.
For details see SI Appendix. The results are consistent with those
from the infeasible criterion, but the feasible criterion com-
presses the performance differences.
The third section of Table 1 explores the costs and benefits

to honest estimation. The table reports the ratio of MSEτðSte,
Sest ∪Str, πEstimator−AðSest ∪StrÞÞ to MSEτðSte,Sest, πEstimator−HðStrÞ
for each estimator. The adaptive version uses the union of the
training and estimation samples for tree building, cross-valida-
tion, and leaf estimation, yielding double the sample size (1,000
observations) at each step. The honest version uses 500 of the
observations in training and cross-validation, with the comple-
ment used for estimating treatment effects within leaves. The
results show that in most cases there is a cost to honest estima-
tion in terms of MSEτ, varying by design and estimator. The cost
is large for the fit estimator in design 1; with a smaller sample
size it largely ignores treatment effect heterogeneity in splitting.
For CT, the cost ranges from 6.8 to 21.5%.
The final two sections of Table 1 show the coverage rate for

90% confidence intervals. We achieve nominal coverage rates
for honest methods in all designs, where, in contrast, the adap-
tive methods have coverage rates substantially below nominal
rates. The fit estimator has the highest adaptive coverage rates; it
does not focus on treatment effects and thus is less prone to
overstating that heterogeneity through adaptive estimation.
Thus, our simulations bear out the tradeoff that honest estima-
tion sacrifices some goodness of fit (of treatment effects) in ex-
change for valid confidence intervals.

Observational Studies with Unconfoundedness
The discussion so far has focused on the setting where the as-
signment to treatment is randomized. The proposed methods
can be adapted to observational studies under the assumption of
unconfoundedness. In that case we need to modify the estimates
within leaves to remove the bias from simple comparisons of
treated and control units. There is a large literature on methods
for doing so (e.g., ref. 3). For example, as in ref. 21 we can do so
by propensity score weighting. Efficiency will improve if we
renormalize the weights within each leaf and within the treat-
ment and control group when estimating treatment effects.

Table 1. Simulation study

Ntr =Nest
Design 1 Design 2 Design 3

Estimator 500 1,000 500 1,000 500 1,000

No. of leaves
TOT 2.9 3.2 2.9 3.5 3.6 5.4
F-A 6.1 13.1 6.3 13.0 6.2 13.0
TS-A 4.0 5.4 3.4 5.1 3.4 6.6
CT-A 4.0 5.5 3.2 3.7 3.5 5.4
F-H 6.0 12.9 6.3 13.0 6.3 13.1
TS-H 4.3 7.8 5.6 11.4 5.9 12.4
CT-H 4.2 7.6 5.6 11.4 6.1 12.5

Infeasible MSE divided by infeasible MSE for CT-H*
TOT-H 1.554 1.938 1.089 1.069 1.081 1.042
F-H 1.790 1.427 1.983 2.709 1.502 2.085
TS-H 0.971 0.963 1.183 1.145 1.178 1.338

Ratio of infeasible MSE: Adaptive to honest†

TOT-A/TOT-H 1.021 0.754 0.717
F-A/F-H 0.491 0.985 0.993
T-A/T-H 0.935 0.841 0.918
CT-A/CT-H 0.929 0.851 0.785

Coverage of 90% confidence intervals – adaptive
TOT-A 0.82 0.85 0.78 0.81 0.69 0.74
F-A 0.89 0.89 0.83 0.84 0.82 0.82
TS-A 0.84 0.84 0.78 0.82 0.75 0.75
CT-A 0.83 0.84 0.78 0.82 0.76 0.79

Coverage of 90% confidence intervals – honest
TOT-H 0.90 0.90 0.90 0.89 0.89 0.90
F-H 0.90 0.90 0.90 0.90 0.90 0.90
TS-H 0.90 0.90 0.91 0.91 0.89 0.90
CT-H 0.89 0.90 0.90 0.90 0.89 0.90

*MSEτðSte,Sest, πEstimatorðStrÞÞ=MSEτðSte,Sest, πCT−HðStrÞÞ.
†MSEτðSte,Sest ∪Str, πEstimator−AðSest ∪StrÞÞ=MSEτðSte,Sest, πEstimator−HðStrÞ.
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Crump et al. (22) propose approaches to trimming observations
with extreme values for the propensity score to improve ro-
bustnesses. Note that there are some additional conditions re-
quired to establish asymptotic normality of treatment effect
estimates when propensity score weighting is used (see, e.g., ref.
21); these results apply without modification to the estimation
phase of honest partitioning algorithms.

The Literature
A small but growing literature seeks to apply supervised machine
learning techniques to the problem of estimating heterogeneous
treatment effects. Beyond those previously discussed, Tian et al. (23)
transform the features rather than the outcomes and then apply
LASSO to the model with the original outcome and the transformed
features. Foster et al. (24) estimate μðw, xÞ=E½YiðwÞjXi = x� for
w= 0,1 using random forests, then calculate τ̂i = μ̂ð1,XiÞ− μ̂ð0,XiÞ.
They use machine learning algorithms to estimate τ̂i as a function of
the units’ attributes, Xi. Imai and Ratkovic (25) use LASSO to
estimate the effects of both treatments and attributes, but with
different penalty terms for the two types of features to allow for
the possibility that the treatment effects are present but the
magnitudes of the interactions are small. Their approach is
similar to ours in that they distinguish between the estimation of
treatment effects and the estimation of the impact of other at-
tributes of units. Green and Kern (26) use Bayesian additive
regression trees to model treatment effect heterogeneity. Taddy
et al. (27) consider a model with the outcome linear in the
covariates and the interaction with the treatment variable. Using
Bayesian nonparametric methods, they project estimates of
heterogeneous treatment effects onto the feature space using
LASSO-type regularization methods to get low-dimensional
summaries of heterogeneity. Dudik et al. (16) and Beygelzimer
and Langford (15) propose a related approach for finding the
optimal treatment policy that combines inverse propensity score
methods with “direct methods” [e.g., directly estimating μðw, xÞ]
that predict the outcome as a function of the treatment and the
unit attributes. The methods can be used to evaluate the average
difference in outcomes from any two policies that map attributes
to treatments, as well as to select the optimal policy function.
They do not focus on hypothesis testing for heterogeneous

treatment effects, and they use conventional approaches for cross-
validation. Also related is targeted learning (28), which modifies the
loss function to increase the weight on the parts of the likelihood
that concern parameters of interest, and work on experimental de-
sign optimized to find subpopulations with positive treatment effects
(29). Finally, Wager and Walther (30) adjust confidence intervals to
account for adaptive estimation, and List et al. (31) adjust for ex-
haustively searching the space of simple partitions.

Conclusion
In this paper we introduce methods for constructing trees for
causal effects that allow us to do valid inference for the causal
effects in randomized experiments and in observational studies
satisfying unconfoundedness. These methods provide valid con-
fidence intervals without restrictions on the number of covariates
or the complexity of the data-generating process. Our methods
partition the feature space into subspaces. The output of our
method is a set of treatment effects and confidence intervals for
each subspace.
A potentially important application of the techniques is to

“data mining” in randomized experiments. Our method can be
used to explore any previously conducted randomized controlled
trial, for example, medical studies or field experiments in de-
velopment economics. Our methods can discover subpopulations
with lower-than-average or higher-than-average treatment ef-
fects while producing confidence intervals for these estimates
with nominal coverage, despite having searched over many pos-
sible subpopulations.
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