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EFFICIENT ESTIMATION OF AVERAGE TREATMENT EFFECTS
USING THE ESTIMATED PROPENSITY SCORE

By Keisuke Hirano, Guido W. Imbens, and Geert Ridder1

We are interested in estimating the average effect of a binary treatment on a scalar
outcome. If assignment to the treatment is exogenous or unconfounded, that is, indepen-
dent of the potential outcomes given covariates, biases associated with simple treatment-
control average comparisons can be removed by adjusting for differences in the covariates.
Rosenbaum and Rubin (1983) show that adjusting solely for differences between treated
and control units in the propensity score removes all biases associated with differences in
covariates. Although adjusting for differences in the propensity score removes all the bias,
this can come at the expense of efficiency, as shown by Hahn (1998), Heckman, Ichimura,
and Todd (1998), and Robins, Mark, and Newey (1992). We show that weighting by the
inverse of a nonparametric estimate of the propensity score, rather than the true propensity
score, leads to an efficient estimate of the average treatment effect. We provide intuition
for this result by showing that this estimator can be interpreted as an empirical likelihood
estimator that efficiently incorporates the information about the propensity score.

Keywords: Propensity score, treatment effects, semiparametric efficiency, sieve
estimator.

1� introduction

Estimating the average effect of a binary treatment or policy on a scalar
outcome is a basic goal of many empirical studies in economics. If assignment to
the treatment is exogenous or unconfounded (i.e., independent of potential out-
comes conditional on covariates or pre-treatment variables, an assumption also
known as selection on observables), the average treatment effect can be estimated
by matching2 or by averaging within-subpopulation differences of treatment and
control averages. If there are many covariates, such strategies may not be desir-
able or even feasible. An alternative approach is based on the propensity score,
the conditional probability of receiving treatment given covariates. Rosenbaum
and Rubin (1983, 1985) show that, under the assumption of unconfoundedness,
adjusting solely for differences in the propensity score between treated and con-
trol units removes all biases. Recent applications of propensity score methods

1 We thank Gary Chamberlain, Jinyong Hahn, James Robins, Donald Rubin, Jeffrey Wooldridge,
four anonymous referees, seminar participants at the University of Chicago, UC Davis, the University
of Michigan, Michigan State University, UC Irvine, the University of Miami, Johns Hopkins, and
Harvard-MIT, and especially Whitney Newey for comments. Financial support for this research was
generously provided through NSF Grants SBR-9818644 and SES-0136789 (Imbens) and SES-9985257
(Hirano).

2 See Abadie and Imbens (2002) for a formal discussion of matching estimators in this context.
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in economics include Dehejia and Wahba (1999), Heckman, Ichimura, and Todd
(1997), and Lechner (1999).
Although adjusting for differences in the propensity score removes all bias, it

need not be as efficient as adjusting for differences in all covariates, as shown
by Hahn (1998), Heckman, Ichimura, and Todd (1998), and Robins, Mark, and
Newey (1992). However, Rosenbaum (1987), Rubin and Thomas (1996), and
Robins, Rotnitzky, and Zhao (1995) show that using parametric estimates of the
propensity score, rather than the true propensity score, can avoid some of these
efficiency losses.
In this paper we propose estimators that are based on adjusting for nonpara-

metric estimates of the propensity score. The proposed estimators weight obser-
vations by the inverse of nonparametric estimates of the propensity score, rather
than the true propensity score. Extending results from Newey (1994) to derive
the large sample properties of these semiparametric estimators, we show that
they achieve the semiparametric efficiency bound. We also show that for the case
in which the propensity score is known the proposed estimators can be inter-
preted as empirical likelihood estimators (e.g., Qin and Lawless (1994), Imbens,
Spady, and Johnson (1998)) that efficiently incorporate the information about
the propensity score.
Our proposed estimators are relevant whether the propensity score is known

or not. In randomized experiments, for example, the propensity score is known
by design. In that case the proposed estimators can be used to improve efficiency
over simply differencing treatment and control averages. With the propensity
score known, an attractive choice for the nonparametric series estimator for the
propensity score is to use the true propensity score as the leading term in the
series. The proposed estimators can also be used in the case where the propen-
sity score is unknown. In that case they are alternatives to the previously pro-
posed efficient estimators that require nonparametric estimation of functions in
addition to the propensity score.
In the next section we lay out the problem and discuss the prior literature.

In Section 3 we provide some intuition for our efficiency results by examining
a simplified version of the problem. In Section 4 we give the formal conditions
under which weighting by the estimated propensity score results in an efficient
estimator. Section 5 concludes.

2� the basic setup and previous results

2�1� The Model

We have a random sample of size N from a large population. For each unit i
in the sample, for i = 1� � � � �N , let Ti indicate whether the treatment of interest
was received, with Ti = 1 if unit i receives the active treatment, and Ti = 0 if unit i
receives the control treatment. Using the potential outcome notation popularized
by Rubin (1974), let Yi�0� denote the outcome for each unit i under control



estimation of average treatment effects 1163

and Yi�1� the outcome under treatment.3 We observe Ti and Yi, where Yi ≡
Ti ·Yi�1�+ �1−Ti� ·Yi�0�. In addition, we observe a vector of covariates denoted
by Xi.4 Initially we focus on the population average treatment effect:

� ≡ E�Y �1�−Y�0���(1)

We shall also discuss estimation of weighted average treatment effects,

�wate ≡
∫
E�Y �1�−Y�0��X = x�g�x�dF �x�∫

g�x�dF �x�
�(2)

where g�·� is a known function of the covariates.5 In the special case where the
weight function g�x� is equal to the propensity score p�x� = Pr�T = 1�X = x�,
this leads under the unconfoundedness assumption to the average effect for the
treated:

�treated ≡ E�Y �1�−Y�0��T = 1��(3)

The central problem of evaluation research is that for unit i we observe either
Yi�0� or Yi�1�, but never both. To solve the identification problem, we maintain
throughout the paper the unconfoundedness assumption (Rubin (1978), Rosen-
baum and Rubin (1983)), related to the selection-on-observables assumption
(Barnow, Cain, and Goldberger (1980)), which asserts that conditional on the
observed covariates, the treatment indicator is independent of the potential out-
comes. Formally, we have the following assumption:

Assumption 1 (Unconfounded Treatment Assignment):

T⊥�Y �0��Y �1�� �X�

Heckman, Ichimura, and Todd (1998) point out that for identification of the
average treatment effect � this assumption can be weakened to mean indepen-
dence �E�Y �t��T �X�=E�Y �t��X� for t= 0�1�. If one is interested in the average
effect for the treated, the assumption can be further weakened to only require

3 Implicit in this notation is the stability assumption or SUTVA (Rubin (1978)) that units are not
affected by receipt of treatment by others, and that there is only one version of the treatment.

4 These variables are assumed not to be affected by the treatment.
5 An alternative estimand, which we do not consider here, is the direct weighted average treatment

effect of the form

�dwate =
∫
E�Y �1�−Y�0��X = x�g�x�dx∫

g�x�dx
�

where the weighting is only over the known function g�x�. Note that in general F �x� is unknown
so that knowledge of g�x� does not imply knowledge of g�x�dF �x� and the other way around;
estimation strategies for the two estimands �wate and �dwate are in general different. Estimands of the
latter type can be fitted into the framework of Robins and Ritov (1997).
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that E�Y �0��T �X�=E�Y �0��X�. In this paper we focus on the full independence
assumption in order to be consistent with much of the literature.
Under unconfoundedness we can estimate the average treatment effect condi-

tional on covariates, ��x�≡ E�Y �1�−Y�0��X = x�, because

��x�= E�Y �1�−Y�0��X = x�

= E�Y �1��T = 1�X = x�−E�Y �0��T = 0�X = x�

= E�Y �T = 1�X = x�−E�Y �T = 0�X = x��

The population average treatment effect can then be obtained by averaging the
��x� over the distribution of X	 � =E���X��. In practice, the strategy of forming
cells and comparing units with exactly the same value of X may fail if X takes
on too many distinct values.6 To avoid the need to match units on the values of
all covariates, Rosenbaum and Rubin (1983, 1985) developed an approach based
on the propensity score, the probability of selection into the treatment group:

p�x�≡ Pr�T = 1�X = x�= E�T �X = x��(4)

which is assumed to be bounded away from zero and one. Their key insight
was that if treatment and potential outcomes are independent conditional on all
covariates, they are also independent conditional on the conditional probability
of receiving treatment given covariates. Formally, as shown by Rosenbaum and
Rubin (1983), unconfoundedness implies

T⊥�Y �0��Y �1�� � p�X��(5)

implying that adjustment for the propensity score suffices for removing all biases
associated with differences in the covariates.

2�2� Previous Results

The model set out above, as well as related models, have been examined by a
number of researchers. In an important paper Hahn (1998), studying the same
model as we do here, calculates the semiparametric efficiency bounds, and pro-
poses efficient estimators, for � and �treated. Hahn’s estimator for � , which is effi-
cient irrespective of whether the propensity score is known, nonparametrically
estimates the two conditional expectations E�YT �X = x� and E�Y �1−T ��X = x�
as well as the propensity score p�x�, and then imputes the missing potential
outcomes as Ŷi�1�= Ê�YT �Xi�/p̂�Xi� and Ŷi�0�= Ê�Y �1−T ��Xi�/�1− p̂�Xi��.
Hahn shows that conditioning only on the true propensity score rather than on the

6 A related issue is whether standard asymptotic theory provides adequate approximations to the
sampling distributions of estimators based on initial nonparametric estimates of conditional means,
especially when the dimension of the conditioning variable is high. For discussions of these issues,
see Robins and Ritov (1997) and Angrist and Hahn (1999) and references therein.
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full set of covariates does not in general lead to an efficient estimator. In addi-
tion Hahn concludes that knowledge of the propensity score is informative for
estimating �treated and derives efficient estimators both with and without such
knowledge. A difference between Hahn’s estimators and our proposed estima-
tors is that Hahn requires nonparametric estimation of the propensity score as
well as the two conditional means E�YT �X = x� and E�Y �1−T ��X = x�, whereas
our proposed estimator only requires nonparametric estimation of the propensity
score.
Heckman, Ichimura, and Todd (1997, 1998) and Heckman, Ichimura, Smith,

and Todd (1998) focus on �treated, the average treatment effect for the treated.
They consider estimators based on local linear regressions of the outcome on
treatment status and either covariates or the propensity score. They conclude that
in general there is no clear ranking of their estimators; under some conditions
the estimator based on adjustment for all covariates is superior to the estimator
based on adjustment for the propensity score, and under other conditions the
second estimator is to be preferred. Lack of knowledge of the propensity score
does not alter this conclusion.
Rosenbaum (1987) and Rubin and Thomas (1996) investigate the differences

between using the estimated and the true propensity score when the propensity
score belongs to a parametric family. They conclude that there can be efficiency
gains from using the estimated propensity score. Our results show that by making
the specification of the propensity score sufficiently flexible, this approach leads
to a fully efficient estimator.
Robins, Mark, and Newey (1992), Robins and Rotnitzky (1995), Robins, Rot-

nitzky, and Zhao (1995), and Rotnitzky and Robins (1995) study the related
problem of inference for parameters in regression models where some data are
Missing At Random (MAR; Rubin (1976), Little and Rubin (1987)). Rotnitzky
and Robins (1995) show that in parametric settings weighting using the estimated
rather than true selection probability can improve efficiency. They suggest it may
be possible to achieve full efficiency by allowing the dimension of the model for
the selection probability to grow with the sample size. For this missing data case
Robins and Rotnitzky (1995) also propose an efficient estimator that relies on
an initial consistent, but not necessarily efficient, estimator of the full population
parameters. The estimator we propose is efficient (as is the estimator proposed
by Hahn), but does not require an initial consistent estimator.

3� a simple example with binary covariates

To develop some intuition for the formal results that will be presented in
Section 4, we consider the simpler problem of estimating the population aver-
age of a variable Y , 
0 = E�Y �, given a random sample of size N of the triple
�Ti�Xi�Ti ·Yi�. In other words, Ti and Xi are observed for all units in the sample,
but Yi is only observed if Ti = 1. We provide a heuristic argument for efficiency
of using estimated weights, deferring formal results to Section 4.
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The analog to the unconfoundedness assumption here is the assumption that
the Yi are Missing At Random (MAR; Rubin (1976)), or

T⊥Y �X�

The role of the propensity score is played here by the selection probability:
p�x� = E�T �X = x� = Pr�T = 1�X = x�. First, we restrict our attention in this
section to the case with a single binary covariate.7 Let Ntx denote the number of
observations with Ti = t and Xi = x, for t� x ∈ �0�1�. Furthermore, suppose the
true selection probability is constant, p�x�= 1/2 for all x ∈ �0�1�.8 The normal-
ized variance bound for 
0 is

Vbound = 2 ·E�V�Y �X��+V�E�Y �X���(6)

The “true weights” estimator weights the complete observations by the inverse
of the true selection probability:


̂tw = 1
N

N∑
i=1

Yi ·Ti

p�Xi�
= 1

N

N∑
i=1

Yi ·Ti

1/2
�(7)

Its large sample normalized variance is

Vtw=2 ·E�V�Y �X��+V�E�Y �X��+E�E�Y �X�2�=Vbound+E�E�Y �X�2��

strictly larger than the variance bound (6) unless E�Y �X�= 0.
The second estimator weights the complete observations by the inverse of a

nonparametric estimate of the selection probability. This estimator is the main
focus of the paper and it will be discussed in Section 4 in more general settings.
In the current setting the estimated selection probability is simply the proportion
of observed outcomes for a given value of the covariate. For units with Xi = 0 the
proportion of observed outcomes is N10/�N00+N10�, and for units with Xi = 1 the
proportion of observed outcomes is N11/�N01+N11�. Thus the estimated selection
probability is

p̂�x�=
{
N10/�N00+N10� if x = 0�
N11/�N01+N11� if x = 1�

The proposed “estimated weights” estimator is then


̂ew = 1
N

N∑
i=1

Yi ·Ti

p̂�Xi�
�(8)

7 An efficient estimator is easily obtained by averaging the within-subsample difference of treat-
ment/control averages. It can also be found by specializing the more general estimators in Robins
and Rotnitzky (1995) and Hahn (1998) to this simple case. The discussion here is solely intended to
convey intuition for the formal results that will be presented in Section 4.

8 Thus the missing data are Missing Completely At Random (MCAR; Rubin (1976), Little and
Rubin (1987)).
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The normalized variance of this estimator is equal to the variance bound:

Vew = 2 ·E�V�Y �X��+V�E�Y �X��= Vbound�

Not only does the weighting estimator with nonparametrically estimated weights
have a lower variance than the estimator using the “true” weights in this simple
case, but it is in fact fully efficient. In the remainder of this section we shall pro-
vide some intuition for this result. This will suggest why this efficiency property
may carry over to the case with continuous and vector-valued covariates, as well
as with general dependence of the selection probability or propensity score on
the covariates.
An alternative interpretation of the estimated-weights estimator is based on

a Generalized Method of Moments (GMM) representation (Hansen (1982)).
Under the assumption that the selection probability is p�x� = 1/2, we can esti-
mate 
0 using the single moment restriction E�
1�Y �X�T �
0��= 0, with


1�y� t� x�
�=
y · t
p�x�

−
= y · t
1/2

−
�

The GMM estimator based on the single moment restriction 
1�·�, given knowl-
edge of the selection probability, is the true-weights estimator 
̂tw in (7).
However, this estimator is not necessarily efficient, because it ignores the addi-
tional information that is available in the form of knowledge of the selection
probability. This additional information can be written in moment condition
form as E�T −p�X��X� = E�T − 1/2�X� = 0. With a binary covariate this con-
ditional moment restriction corresponds to two marginal moment restrictions,
E�
2�Y �T �X�
0��= 0, with:


2�y� t� x�
�=
(

x · �t−1/2�
�1−x� · �t−1/2�

)
�

Estimating 
0 in a generalized method of moments framework using the
moments 
1�·� and 
2�·� leads to a fully efficient estimator.9 Here it is of partic-
ular interest to consider the empirical likelihood estimator (e.g., Qin and Lawless
(1994), Imbens (1997), Kitamura and Stutzer (1997), Imbens, Spady, and John-
son (1998)). Empirical likelihood estimation is based on maximization, both over
a nuisance parameter � = ��1� � � � ��N � and over the parameter of interest 
, of
the logarithm of the empirical likelihood function:

L���=
N∑
i=1

ln�i�(9)

9 Although 
2�·� does not depend on the parameter of interest, 
2�·� is generally correlated with

1�·�. Thus there can be efficiency gains from using both sets of moment conditions as in seemingly
unrelated regressions. See, e.g., Hellerstein and Imbens (1999) and Qian and Schmidt (1999).
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subject to the adding-up restriction
∑

i �i = 1 and the moment conditions∑
i �i
�yi� ti� xi�
� = 0. Solving for �̂i and 
̂el by maximizing (9) subject to the

restrictions leads, after some manipulation, to:

�̂i =
(
1+

N11
N01+N11

−1/2

1/4
·xi · �ti−1/2�

+
N10

N00+N10
−1/2

1/4
· �1−xi� · �ti−1/2�

)−1

�

which in turn implies


̂el =
N∑
i=1

2 · �̂i ·Yi ·Ti = 
̂ew�

equal to the estimated weights estimator.
The above discussion generalizes directly to the case with general discrete

covariates. With continuous covariates knowledge of the propensity score implies
a conditional moment restriction corresponding to an infinite number of uncon-
ditional moment restrictions (e.g., Chamberlain (1987)). Using a series estimator
for the propensity score captures the information content of such a conditional
moment restriction by a sequence of unconditional moment restrictions.
The empirical likelihood interpretation suggests that moving from the true-

weights estimator to the estimated-weights estimator increases efficiency in the
same way that adding moment restrictions in a generalized method of moments
framework improves efficiency. A similar finding appears in Crepon, Kramarz,
and Trognon (1998) who find that using a reduced set of moment conditions, in
which nuisance parameters are replaced by solutions to the sample analogs of the
remaining moment conditions, is asymptotically equivalent to using the full set
of moment conditions, whereas using the true values of the nuisance parameters
may lead to efficiency losses. These results are also linked to the literature on
weighting in stratified sampling. Translated to this simple example, the results by
Lancaster (1990) suggest studying the distribution of the various estimators con-
ditional on the ancillary statistics

∑
Ti,

∑
Xi, and

∑
Ti ·Xi. Conditional on those

three statistics the true-weights estimator is biased, while the estimated-weights
estimator remains unbiased. Rosenbaum (1987) discusses this issue specifically
in the context of estimated versus true propensity scores. In a general discussion
of weighted M-estimators, Wooldridge (1999, 2002) shows that weighting by the
inverse of estimated rather than population probabilities can lead to efficiency
gains.

4� efficient estimation using estimated weights

In this section we present the main results of the paper. We discuss three
distinct cases. First, we consider the problem of estimating the population aver-
age treatment effect under the unconfoundedness assumption. This includes as
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a special case the extension of the binary-covariate MAR example of the previ-
ous section to continuous covariates. Second, we consider estimation of weighted
average treatment effects. Finally, we consider estimation of the effect of the
treatment on the treated which, in the known propensity score case, will follow
directly from the solution to the general weighted average treatment effect case.
This discussion will shed additional light on Hahn’s (1998) interesting result that
for this parameter knowledge of the propensity score affects the efficiency bound,
as well as on the findings in Heckman, Ichimura, and Todd (1998) that in the
case of the average treatment effect for the treated, neither using the true nor
using the estimated propensity score dominates the other.

4�1� Estimating Population Average Treatment Effects

In this section we use the set up from Section 2 with a pair of potential out-
comes �Y �0��Y �1�� for each unit and focus on efficient estimation of the popu-
lation average treatment effect, �∗ =E�Y �1�−Y�0��.10 As before, p�x�= Pr�T =
1�X = x� is the propensity score, the probability of receiving the active treatment.
We maintain the unconfoundedness assumption. Define �t�x� ≡ E�Y �t��X =
x� and �2

t �x� = V�Y �t��X = x� to be the conditional mean and variance of
Y�t� respectively. Under unconfoundedness we have �t�x�= E�Y �T = t�X = x�
and �2

t �x� = V�Y �T = t�X = x�. We can characterize �∗ through the moment
equation:

E�
�Y �T �X��∗�p∗�X���= 0�

where


�y� t� x� ��p�x��= y · t
p�x�

− y · �1− t�

1−p�x�
−��(10)

Given an estimator p̂�x� for the propensity score, we estimate �∗ by setting the
average moment evaluated at the estimated selection probability equal to zero as
a function of � : �1/N�

∑N
i=1
�Yi�Ti�Xi� �̂� p̂�Xi��= 0, leading to the estimator

�̂ = 1
N

N∑
i=1

(
Yi ·Ti

p̂�Xi�
− Yi · �1−Ti�

1− p̂�Xi�

)
�(11)

Because p∗�x� is a conditional expectation, this semiparametric estimation prob-
lem directly fits into the framework of Newey (1994). So we could apply his
results directly if we estimate p∗�x� by a series of least squares regressions of
treatment on polynomials in the covariates. (See the working paper version,
Hirano, Imbens, and Ridder (2000).) However, because p∗�x� is a probabil-
ity, such an approach has the unattractive feature that it approximates a prob-
ability by a linear function. We therefore estimate p∗�x� in a sieve approach

10 Whenever necessary to avoid confusion we will use a superscript ∗ to denote true (population)
values, so that �∗ denotes the population average treatment effect and p∗�x� the true (population)
propensity score.
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(e.g., Geman and Hwang (1982)) by the Series Logit Estimator (SLE). For K =
1�2� � � � , let RK�x� = �r1K�x�� r2K�x�� � � � � rKK�x��

′ be a K-vector of functions.
Although the theory is derived for general sequences of approximating func-
tions, the most common class of functions are power series. Let �= ��1� � � � � �r�

′

be an r-dimensional vector of nonnegative integers (multi-indices), with norm
��� = ∑r

j=1 �j , let ���k���k=1 be a sequence that includes all distinct multi-indices
and satisfies ���k�� ≤ ���k+ 1��, and let x� = ∏r

j=1 x
�j
j . For a sequence ��k�

we consider the series rkK�x� = x��k�. If we denote the logistic cdf by L�a� =
exp�a�/�1+exp�a��, the SLE for p∗�x� is defined by p̂�x�= L�RK�x�′�̂K� with

�̂K = argmax
�

N∑
i=1

�Ti · lnL�RK�Xi�
′��+ �1−Ti� · ln�1−L�RK�Xi�

′�����

In Appendix A we discuss the relevant asymptotic theory for p̂�x�.
In addition to the unconfoundedness assumption the following assumptions are

used to derive the properties of the estimator. First, we restrict the distribution
of X, Y�0�, and Y�1�:

Assumption 2 (Distribution of X):
(i) the support X of the r-dimensional covariate X is a Cartesian product of

compact intervals, X =∏r
j=1�xlj � xuj �;

(ii) the density of X is bounded, and bounded away from 0, on X.

Assumption 3 (Distribution of Y�0��Y �1�):
(i) E�Y �0�2� <� and E�Y �1�2� <�;
(ii) �0�x� and �1�x� are continuously differentiable for all x ∈ X.

The next assumption requires sufficient smoothness of the propensity score.

Assumption 4 (Selection Probability): The propensity score p∗�x� satisfies the
following conditions. For all x ∈ X:

(i) p∗�x� is continuously differentiable of order s ≥ 7 ·r where r is the dimension
of X;
(ii) p∗�x� is bounded away from zero and one: 0< p ≤ p∗�x�≤ p̄ < 1.

Finally, we restrict the rate at which additional terms are added to the series
approximation to p∗�x�, depending on the dimension of X and the number of
derivatives of p∗�x�.

Assumption 5 (Series Estimator): The series logit estimator of p∗�x� uses a
power series with K =N� for some 1/�4�s/r−1�� < � < 1

9 .

The restriction on the derivatives (Assumption 4(i)) guarantees the existence
of a � that satisfies the conditions in Assumption 5. Under these conditions we
can state the first result.
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Theorem 1: Suppose Assumptions 1–5 hold. Then:
(i) �̂

p−→ �∗;
(ii)

√
N��̂−�∗�

d−→ � �0�V �, where

V = E
[((

YT

p∗�X�
− Y�1−T �

1−p∗�X�
−�∗

)
−

(
�1�X�

p∗�x�
+ �0�X�

1−p∗�X�

)
�T −p∗�X��

)2]
= E

[
���X�−��2+ �2

1 �X�

p∗�X�
+ �2

0 �X�

1−p∗�X�

]
� and

(iii) �̂ reaches the semiparametric efficiency bound.

Proof: See Appendix B.

Remark 1: This result also covers the extension of the binary-covariate MAR
example in Section 3 to the continuous covariate case. For this case set Y = 0 if
T = 0 and set Y�0� identically equal to 0.

Remark 2: Theorem 1 establishes the result for continuous X. If X has both
continuous and discrete components, this can be dealt with in a conceptually
straightforward manner by using the continuous covariate estimator within sam-
ples homogenous in the discrete covariates, at the expense of additional notation.
Derivations presented in Appendix B show that the estimator in Theorem 1

can be represented as asymptotically linear:

�̂ = �∗ + 1
N

N∑
i=1

�
�Yi�Ti�Xi� �
∗�p∗�Xi��+��Ti�Xi��+op�1/

√
N��

where 
�·� is defined in (10) and

��t�x�=−
(
�1�x�

p∗�x�
+ �0�x�

1−p∗�x�

)
· �t−p∗�x���(12)

The known-weights estimator, (11) with p̂�x� replaced by p∗�x�, is asymptotically
linear with score function 
�·�. The function ��t�x� represents the effect on the
score function of estimating p∗�x�. Its first factor, −��1�x�/p

∗�x�+�0�x�/�1−
p∗�x���, is the conditional expectation of the derivative of the moment condition

�y� t� x� �∗�p∗�x�� with respect to p∗�x�. Hence, the score linearizes the esti-
mator with respect to � (which is trivial since the estimator is already linear in
�) and p�·�.
The asymptotically linear representation of �̂ implies that its asymptotic vari-

ance equals

E��
�Y �T �X��∗�p∗�X��+��T �X��2��(13)
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shown in Appendix B to be equal to the variance expression in Theorem 1. We
estimate this variance by replacing the unknown quantities � , p∗�·�, and ��·� by
estimates and replacing the expectation by a sample average:

V̂ = 1
N

N∑
i=1

�
�Yi�Ti�Xi� �̂� p̂�Xi��+ �̂�Ti�Xi��
2�(14)

The estimation of ��t�x� requires some additional explanation. The second
factor, t − p∗�x� is estimated as t − p̂�x�. The first factor, −��1�x�/p

∗�x�+
�0�x�/�1 − p∗�x���, can be written as the conditional expectation of
−�YT /p∗�X�2+Y�1−T �/�1−p∗�X��2� givenX. We therefore estimate the first
factor in ��t�x� by nonparametric regression of −�YT /p̂�X�2 +Y�1−T �/�1−
p̂�X��2� on X, using the same series approach as we used for estimating p∗�x�.
Thus

−
(

1
N

N∑
i=1

(
YiTi

p̂�Xi�
2
+ Yi�1−Ti�

�1− p̂�Xi��
2

)
RK�Xi�

)′

×
(

1
N

N∑
i=1

RK�Xi�R
K�Xi�

′
)−1

RK�x��

with RK�x� the same series of approximating functions as before, is used as an
estimator for −��1�x�/p

∗�x�+�0�x�/�1−p∗�x���, and the function ��t�x� is
estimated by �̂�t� x�:

�̂�t� x�=−
(

1
N

N∑
i=1

(
YiTi

p̂�Xi�
2
+ Yi�1−Ti�

�1− p̂�Xi��
2

)
RK�Xi�

)′
(15)

×
(

1
N

N∑
i=1

RK�Xi�R
K�Xi�

′
)−1

RK�x��t− p̂�x���

The following theorem describes the formal result.

Theorem 2: Suppose Assumptions 1–5 hold. Then V̂ is consistent for V .

Proof: See Appendix B.

In practice bootstrapping methods may be a valuable alternative to the above
variance estimator.

4�2� Estimating the Weighted Average Treatment Effect

In this section we generalize the previous result to �∗
wate, the weighted average

treatment effect for a known weight function g�x�. One motivation for consider-
ing this estimand is that by choosing g�x� appropriately, we can obtain treatment
effects for subpopulations defined by X. In addition, by choosing g�x� equal to



estimation of average treatment effects 1173

the propensity score p∗�x�, we can recover the average effect of the treatment
on the treated, as will be discussed below.
To estimate �wate, we use the following moment function:


�y� t� x� �wate�p�x��= g�x� ·
(

y · t
p�x�

− y · �1− t�

1−p�x�
−�wate

)
�(16)

leading to the estimator

�̂wate =
∑
i

g�Xi�

[
Yi ·Ti

p̂�Xi�
− Yi · �1−Ti�

1− p̂�Xi�

]/∑
i

g�Xi��

This estimator is asymptotically linear:

�̂wate =
1

E�g�X��

1
N

N∑
i=1

�
�Yi�Ti�Xi� �
∗
wate�p

∗�x��

+��Ti�Xi��+op�1/
√
N��

where now

��t�x�=−g�x� ·
(
�1�x�

p∗�x�
+ �0�x�

1−p∗�x�

)
�t−p∗�x���

The asymptotic variance can be estimated as

V̂ = 1
�
∑

i g�Xi�/N�2
1
N

N∑
i=1

�
�Yi�Ti�Xi� �̂wate� p̂�Xi��+ �̂�Ti�Xi��
2�

with an estimator for ��t�x� analogous to that for the average treatment effect:

�̂�t� x�=−g�x�
1
N

N∑
i=1

((
YiTi

p̂K�Xi�
2
+ Yi�1−Ti�

�1− p̂K�Xi��
2

)
RK�Xi�R

K�Xi�

)′

×
(

1
N

N∑
i=1

RK�Xi�R
K�Xi�

′
)−1

RK�x��t− p̂K�x���

Similar reasoning to the previous results gives the following theorem:

Theorem 3: Suppose Assumptions 1–5 hold, that �g�x�� is bounded from above
and that E�g�X�� > 0. Then:

(i) �̂wate
p−→ �∗

wate;

(ii)
√
N��̂wate−�∗

wate�
d−→ � �0�V �, with

V = 1
E�g�X��2

E
[
g�X�2���X�−�∗

wate�
2+ g�X�2

p∗�X�
�2
1 �X�

+ g�X�2

1−p∗�X�
�2
0 �X�

]
� and

(iii) V̂ is consistent for V .
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The proof for this theorem follows the same line of argument as that for
Theorems 1 and 2 and is omitted.

Remark: We could weaken Assumption 4(ii), the assumption that the
propensity score is bounded away from 0 and 1, by the assumption that
g�x�/p∗�x� and g�x�/�1−p∗�x�� are bounded from above. Thus, if there is insuf-
ficient overlap in the distributions of the treated and untreated units, one may
wish to choose g�·� to restrict attention to a subpopulation for which there is
sufficiently large probability of observing both treated and untreated units.
A semiparametric efficiency bound for �wate has not been previously calculated

in the literature. The next result shows that our estimator is efficient.

Theorem 4: The semiparametric efficiency bound for estimation of �wate is

V = 1
E�g�X��2

E
[
g�X�2���X�−�wate�

2+ g�X�2

p∗�X�
�2
1 �X�

+ g�X�2

1−p∗�X�
�2
0 �X�

]
�

Proof: See Appendix B.

4�3� Estimating the Average Treatment Effect for the Treated

Under unconfoundedness the average treatment effect for the treated (Rubin
(1977), Heckman and Robb (1985), Heckman, Ichimura, and Todd (1997, 1998))
is a special case of the weighted average treatment effect, corresponding to the
weighting function g�x� = p∗�x�. To see this, first note that under unconfound-
edness

�∗
treated = E�Y �1�−Y�0��T = 1�= E�E�Y �1�−Y�0��X�T = 1��T = 1�

= E�E�Y �1�−Y�0��X��T = 1�= E���X��T = 1��

Second, the latter is equal to

E���X��T = 1�=
∫
��x�dF �x�T = 1�

=
∫
��x�p∗�x�dF �x�

/∫
p∗�x�dF �x��

which is �∗
wate with g�x� equal to p∗�x�. Hence we can use the moment equation

(16) with p∗�x� substituted for g�x�:


�y� t� x� �treated�p�x��= p∗�x� ·
(

y · t
p�x�

− y · �1− t�

1−p�x�
−�treated

)
�(17)
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The estimator is the solution to

0=
N∑
i=1

p∗�Xi� ·
(
Yi ·Ti

p̂�Xi�
− Yi · �1−Ti�

1− p̂�Xi�
−�treated

)
�(18)

with the same nonparametric series estimator p̂�x� as before.
The next result, which follows directly from Theorem 4, shows that this estima-

tor achieves the efficiency bound calculated by Hahn (1998) for estimation of the
effect of treatment on the treated, assuming that the propensity score is known.

Corollary 1: Suppose that Assumptions 1–5 hold. Then:
(i) �̂treated

p−→ �∗
treated;

(ii)
√
N��̂treated−�∗

treated�
d−→ � �0�V �, with

V = 1
E�p∗�X��2

E
[
p∗�X�2���X�−�treated�

2+p∗�X��2
1 �X�

+ p∗�X�2

1−p∗�X�
�2
0 �X�

]
� and

(iii) �̂treated achieves the semiparametric efficiency bound.

The proof for this corollary is omitted as the result directly follows from
Theorem 4.
Note that in the moment function (17) the propensity score appears in two

places, first as p∗�x� multiplying the remainder of the moment function where
it replaces the general weight function g�x� in (16), and second as p�x� in the
denominator of the two terms. We only use the estimated propensity score in the
second part in the efficient estimator in (18). The result of the theorem above
implies that this is more efficient than using the true propensity score everywhere
and solving

0=
N∑
i=1

p∗�Xi� ·
(

Yi ·Ti

p∗�Xi�
− Yi · �1−Ti�

1−p∗�Xi�
−�treated

)
�(19)

or using the estimated propensity score everywhere, which amounts to solving

0=
N∑
i=1

p̂�Xi� ·
(
Yi ·Ti

p̂�Xi�
− Yi · �1−Ti�

1− p̂�Xi�
−�treated

)
�(20)

A direct implication of this result is that the sample average of the outcomes
for the treated

∑
i YiTi/

∑
i Ti is less efficient for the population average

E�Y �1��T = 1� than the weighted average
∑

i YiTi�p
∗�Xi�/p̂�Xi��/

∑
i p

∗�Xi�
where the weights are the ratio of the true and estimated propensity score.
Another implication is that the estimators characterized by (19) and (20) cannot
in general be ranked in terms of efficiency as there are effects of opposite signs
(e.g., Heckman, Ichimura, and Todd (1997)).
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If the propensity score is not known, then Hahn (1998) shows that this affects
the efficiency bound for the effect of treatment on the treated. Our previous
estimator �̂treated cannot be used since it makes use of p∗�x�. However, we can use
the estimated propensity score in place of p∗�x� in the weighting of observations
as in (20). Call this estimator �̂te. The next theorem shows that this estimator is
efficient if the propensity is not known.

Theorem 5: Suppose that Assumptions 1–5 hold. Then:
(i) �̂te

p−→ �∗
treated;

(ii)
√
N��̂te−�∗

treated�
d−→ � �0�V �, with

V = 1
E�p∗�X��2

E
[
p∗�X����X�−�treated�

2+p∗�X��2
1 �X�

+ p∗�X�2

1−p∗�X�
�2
0 �X�

]
� and

(iii) �̂te achieves the semiparametric efficiency bound for estimation of �treated when
the propensity score is not known.

The proof goes along the same lines as that for Theorems 1 and 2 and is
omitted.

5� conclusion

In this paper we have studied efficient estimation of various average treatment
effects under an unconfounded treatment assignment assumption. Although
weighting observations by the inverse of the true propensity score does not lead
to efficient estimators, weighting each observation by the inverse of a nonpara-
metric estimate of the propensity score does lead to efficient estimators. We pro-
vide intuition for this result through connections to the literatures on empirical
likelihood estimators and choice-based sampling.
The estimators proposed in this paper require fewer functions to be estimated

nonparametrically than other efficient estimators previously proposed in the lit-
erature. Which estimators have more attractive finite sample properties, and
which have more attractive computational properties, remain open questions.
The results underline the important role played by the propensity score in esti-
mation of average causal effects.
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APPENDIX A: Logistic Series Estimator

In this appendix we derive the relevant properties of the logistic series estimator, which can be
interpreted as a sieve estimator (e.g., Geman and Hwang (1982)). Let rK�x�= �r1K�x�� � � � � rKK�x��

′

be a K-vector of functions. The triangular array of functions rK�x�, K = 1�2� � � � , is the basis for
the approximation of the propensity score. In particular, we approximate a function f 	 Rr → R
by � ′

Kr
K�x�. Because � ′

Kr
K�x� = � ′

KA
−1
K AKr

K�x� we can also use RK�x� = AKr
K�x� as the basis of

approximation. By choosing AK appropriately we obtain a system of orthogonal (with respect to
some weight function) functions. Specifically we choose AK so that E�RK�X�RK�X�′� = IK . The
properties of the series logit estimator and the proof of Theorem 1 are mostly for a general system of
approximating functions. We shall indicate where the properties of the specific approximating class
of functions are used. We will use the matrix norm �A� = √

tr�A′A�. Note that this is the usual
Euclidean norm if A is a column vector.11 If A is a scalar, we denote the norm by �A�. Define

��K�= sup
x∈X

�RK�x���(21)

In general, this bound depends on the array of approximating functions that is used. For orthonormal
polynomials Newey (1994, 1997) shows ��K� ≤ CK. Here, and in the sequel, C denotes a generic
positive constant.12

We consider approximation of the log odds ratio by a power series. One possible choice for a
triangular sequence of powers of x is

r1�x�= 1� r2�x�=
[
1
x1

]
� rr+1�x�=


1
x1

���
xr

 � rr+1�x�=



1
x1

���
xr

x2
1

 � � � � �(22)

Linear combinations of the elements of the vectors rK�x� are the approximating power series. A
power series with �n+ 1�r terms has x1� � � � � xr included at least up to power n. Hence, if we use
the sequence in (22) and set K = �n+ 1�r , then rK�x� has powers in all variables at least up to n.
If a function f is s times continuously differentiable and K = �n+1�r , then by Theorem 8, p. 90, in
Lorentz (1986) there is a K-vector �K such that for RK�x�=AKr

K�x�, and on the compact set X,

sup
x∈X

�f �x�−RK�x�′�K �<C1n
−s ≤ C2K

− s
r �(23)

11 It is useful to list some properties of this norm that will be used in the following discussion.
Let A and B be K×K matrices and c be a K vector. Then �AB�2 = ∑

i

∑
j �
∑

k aikbkj �
2. Applying

the vector Cauchy-Schwartz inequality to the inner sum, we find �AB� ≤ �A��B�. By the maximum
inequality for quadratic forms �Ac� ≤ √

�max�A
′A��c�, where �max is the largest eigenvalue, which

gives a sharp upper bound (the upper bound �A��c� is not sharp in general). We also frequently use
the Cauchy-Schwartz inequality for expectations, which implies that for nonnegative random variables
X�Y , E�XY�≤√

E�X2�E�Y 2�.
12 If two constants are needed, we will use the generic notation C1�C2.
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To ensure that the approximation of p∗�x� is between 0 and 1 we first approximate the log odds
ratio, which is also s times continuously differentiable and which is bounded on X if the propensity
score is bounded away from zero and one. Hence by (23) there is a �K such that

sup
x∈X

∣∣∣∣ ln( p∗�x�
1−p∗�x�

)
−RK�x�′�K

∣∣∣∣<CK− s
r �(24)

Let L�z� = exp�z�/�1+ exp�z�� be the logistic cdf and L′�z� = L�z� · �1−L�z��. The series logit
estimator of the population propensity score p∗�x� is p̂K�x�= L�RK�x�′�̂K�, where

�̂K = argmax
�

LN ����(25)

for

LN���=
N∑
i=1

�Ti · lnL�RK�Xi�
′��+ �1−Ti� · ln�1−L�RK�Xi�

′�����(26)

For N →� and K fixed we have �̂K

p−→ �∗
K , with �∗

K the pseudo true value:

�∗
K = argmax

�
E�p∗�X� lnL�RK�X�′��+ �1−p∗�X�� ln�1−L�RK�X�′�����(27)

We also define the pseudo true propensity score: p∗
K�x�= L�RK�x�′�∗

K�.
In the proofs for the theorems we need some properties of this series logit estimator. For these

properties it is convenient to distinguish between (i) the deterministic difference between the true
propensity score and the pseudo true propensity score and (ii) the stochastic difference between the
estimated propensity score and the pseudo true value. In the remainder of this appendix we therefore
derive (i) a uniform bound on the difference between p∗�x� and p∗

K�x� and (ii) a bound on the
sampling variance in the form of the stochastic order of ��̂K −�∗

K�.

Lemma 1 (Approximation of Propensity Score): Suppose that:
(i) the support X of X is a compact subset of Rr ;
(ii) the propensity score p∗�x� is s times continuously differentiable, with s/r ≥ 4;
(iii) the propensity score p∗�x� is bounded away from zero and one on X;
(iv) the density of X is bounded away from zero on X.
Then for �K in (24),

��K −�∗
K� =O�K−s/�2r���

and

sup
x∈X

�p∗�x�−p∗
K�x�� =O�K−s/�2r���K���

Proof: From (24), and by monotonicity of L�·�, for all x ∈ X,

L�RK�x�′�K −CK−s/r �−L�RK�x�′�K� < p∗�x�−L�RK�x�′�K�(28)

<L�RK�x�′�K +CK−s/r �−L�RK�x�′�K��

By the mean value theorem applied to the lower and upper bound and by L′�RK�x�′�̃� =
L�RK�x�′�̃��1− L�rK�x�′�̃�� < 1/4 we find that the lower and upper bound are bounded by
− 1

4CK
−s/r and 1

4CK
−s/r , respectively. Hence, for the �K that satisfies (24), we have

sup
x∈X

�p∗�x�−L�RK�x�′�K��<CK−s/r �(29)
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Define

Q∗���= E�p∗�X� lnL�RK�X�′��+ �1−p∗�X�� ln�1−L�RK�X�′�����

and

QK���= E�L�RK�X�′�K� lnL�R
K�X�′��+ �1−L�RK�X�′�K�� ln�1−L�RK�X�′�����

Then, by definition we have �∗
K = argmax� Q∗���, and by the information inequality we have

�K = argmax
�

QK����

Let � = infx∈X p∗�x� · �1−p∗�x��, so that by assumption (iii) � > 0. Define

�K =
{
� ∈ RK

∣∣∣ inf
x∈X

L�RK�x�′���1−L�RK�x�′���≥ �/2
}
�

Because of (29), for K large enough, we have �K ∈�K . Also, because L�RK�x�′�� is bounded away
from zero and one for � ∈�K , it follows that lnL�RK�x�′�� is bounded, and thus by (29) there is a
C1 such that

sup
�∈�K

�Q∗���−QK���� ≤ C1K
−s/r �(30)

Next, define for fixed C2

�̃K = �� ∈ RK ���−�K� ≤ C2K
−s/�2r���(31)

Because

sup
x∈X��∈�̃K

�L�RK�x�′��−L�RK�x�′�K�� ≤ sup
x∈X��∈�̃K � �̃

�L′�RK�x�′�̃�RK�x�′��−�K��

≤ sup
x∈X

�RK�x�� · sup
�∈�̃K

��−�K� ≤ C��K�K−s/�2r��

it follows that for a polynomial series estimator with ��K�≤CK, and for large enough K, �̃K ⊂�K .
Thus, for � ∈ �̃K and with �min�A� the smallest eigenvalue of A, and for large enough K so that
�̃K ⊂�K , given that E�RK�X�RK�X�′�= IK , we have

�min

(
− �2QK

�� �� ′ ���

)
= �min�E�L

′�RK�x�′��RK�X�RK�X�′��≥ �/2�(32)

Now choose the C2 in (31) to satisfy C2 >
√
4C1/�, for the C1 in (30). Let K be large enough so that

�̃K ⊂�K . Then, for � such that ��−�K� =C2K
−s/�2r�, i.e., � ∈ �̃K , the difference Q∗��K�−Q∗���

satisfies

Q∗��K�−Q∗���≥QK��K�−C1K
−s/r −QK���−C1K

−s/r

≥− �QK

��
��K���−�K�−

1
2
��−�K�

′ �
2QK

�� �� ′ ��̃���−�K�−2C1K
−s/r

≥ C2
2�

2
K−s/r −2C1K

−s/r > 0�

Hence, there is a local maximum of Q∗��� in the interior of �̃K , so that with Q∗��� concave,
�∗

K = argmaxQ∗��� must satisfy �∗
K ∈ �̃K , proving the first assertion. Then

�L�RK�X�′�K�−L�RK�X�′�∗
K�� ≤ �RK�X�� · ��∗

K −�K� =O���K�K−s/�2r���

and thus by (29) and the triangle inequality we have

sup
x∈X

�p∗�x�−L�RK�x�′�∗
K�� =O�K−s/�2r���K��� Q�E�D�

Next we derive the stochastic order of ��̂K −�∗
K� as K increases with N .
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Lemma 2 (Convergence of �̂K −�∗
K): Suppose the same four conditions as in Lemma 1 hold. In

addition, suppose that:
(v) K�N� is a sequence of values of K satisfying K�N�→�, and ��K�N��4/N → 0.
Then

��̂K�N�−�∗
K�N�� =Op

(√
K�N�

N

)
�

Proof: In the sequel we write K for K�N�. By definition of RK�x�,

ŜK = 1
N

N∑
i=1

RK�Xi�R
K�Xi�

′(33)

has expectation equal to IK . By Newey (1997), it satisfies

�ŜK − IK� =Op

(
��K�

√
K

N

)
�

which converges to zero in probability by condition (v). Hence the probability that the smallest
eigenvalue of ŜK is larger than 1/2 goes to one.

Next, we show that

1
N

�LN

��
��∗

K�=Op

(√
K

N

)
�(34)

Consider

E

∥∥∥∥ 1
N

�LN

��
��∗

K�

∥∥∥∥2

= 1
N

trE�L�RK�X�′�∗
K��1−L�RK�X�′�∗

K��R
K�X�RK�X�′�

≤ 1
N

trE�RK�X�RK�X�′�=K/N�

Hence

E

∥∥∥∥ 1
N

�LN

��
��∗

K�

∥∥∥∥2

=O�K/N��

and the Markov inequality implies (34).
Next, let � = infx∈X�K L�RK�x�′�∗

K��1−L�RK�x�′�∗
K��/8, which by conditions (i) and (iii) and

Lemma 1 is positive. For any � > 0 choose C such that for N large enough

Pr
(∥∥∥∥ 1

N

�LN

��
��∗

K�

∥∥∥∥< �C

√
K

N

)
≥ 1− �

2
�(35)

Note that,

sup
x∈X���−�∗

K
�≤C

√
K
N

�L�RK�x�′��−L�RK�x�′�∗
K��

≤ sup
x∈X���−�∗

K
�≤C

√
K
N

�RK�x�′��−�∗
K�� ≤ ��K�C

√
K

N
�

which goes to zero, so that for large enough N ,

inf
x∈X���−�∗

K
�≤C

√
K
N

�L�RK�x�′���1−L�RK�x�′����≥ 4��
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Choose N large enough so that this inequality holds, that (35) holds with probability at least 1−�/2,
and that the probability that the smallest eigenvalue of ŜK is larger than 1/2 is at least 1−�/2. Then
the probability that both of these hold is at least 1−�. Then for every � with ��−�∗

K� = C
√
K/N ,

a second-order expansion gives

1
N

LN���= 1
N

LN��
∗
K�+

1
N

�LN ��
∗
K�

��
��−�∗

K�+
1
2N

��−�∗
K�

′ �
2LN��̄�

�� �� ′ ��−�∗
K�(36)

where ��̄−�∗
K� ≤ ��−�∗

K� = C
√
K/N . We have

1
2N

�2LN��̄�

�� �� ′ = − 1
2N

n∑
i=1

�L�RK�Xi�
′�̄��1−L�RK�Xi�

′�̄��RK�Xi�R
K�Xi�

′�

≤ −2�ŜK�

with its eigenvalues bounded away from zero in absolute value by �. Then, rearranging (36) and
using the triangle inequality, with probability greater than 1−�, for ��−�∗

K� = C
√
K/N ,

1
N

LN���− 1
N

LN��
∗
K� ≤

1
N

�LN

��
��∗

K�
′��−�∗

K�−���−�∗
K�2

≤
∥∥∥∥ 1
N

�LN

��
��∗

K�

∥∥∥∥ · ��−�∗
K�−���−�∗

K�2

=
(∥∥∥∥ 1

N

�LN

��
��∗

K�

∥∥∥∥−�C

√
K

N

)
· ��−�∗

K�< 0�

That is, we have with probability greater than 1−�,

1
N

LN��� <
1
N

LN��
∗
K� for all � with ��−�∗

K� = C

√
K

N
�

Since LN��� is continuous, it has a maximum on the compact set �� 	 �� −�∗
K� ≤ C

√
K/N�. By

the last inequality, this maximum must occur for some �̂K with ��̂ −�∗
K� < C

√
K/N . Hence the

first-order conditions are satisfied at �̂K and by concavity of LN���� �̂K maximizes LN��� over all
of RK� Because the probability of this is greater than 1− � with � arbitrary, we conclude that �̂K

exists and satisfies the first order conditions with probability approaching one, and that ��̂K −�∗
K� =

Op�
√
K/N�. Q.E.D.

APPENDIX B: Proofs of Theorems

Proof of Theorem 1: To ease the notational burden we present the proof for the special case
with Y�0� identically equal to 0. This can be interpreted as the special case where one is interested
in estimating the average outcome 
= E�Y �1��, where Y�1� is missing at random conditional on the
covariates X. Thus it is the direct extension of the binary-covariate example in Section 3. Since
the average treatment effect case simply amounts to estimating two averages where in both cases
the variables are missing at random, the argument for the general case is exactly analogous, only
involving substantially longer equations. In the proof we therefore follow the missing at random set
up with the parameter of interest equal to 
 = E�Y �1��, making the missing at random assumption
Y�1�⊥ T �X, and with a random sample of �Ti�Xi�Yi�

N
i=1, where Yi = Yi�1� ·Ti.

The estimated weight estimator 
̂ew is


̂ew = 1
N

N∑
i=1

Ti ·Yi

p̂K�Xi�
(37)

with p̂K�Xi�= L�RK�Xi�
′�̂K�. The key part of the proof is to show that∥∥∥∥√N�
̂ew −
∗�− 1√

N

N∑
i=1

{(
Ti ·Yi

p∗�Xi�
−
∗

)
− �1�Xi�

p∗�Xi�
�Ti −p∗�Xi��

}∥∥∥∥= oP �1��(38)
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This implies that 
̂ew is asymptotically linear, i.e. behaves asymptotically as a sample average, with
score function 
�Y �T �X�
∗�p∗�·��+��T �X�, where


�y� t� x�
�p�·��= t ·y
p�x�

−
� and ��t�x�=−�1�x�

p∗�x�
· �t−p∗�x���

The first term of the score function, 
�·�, is equal to the score that would obtain if we substitute the
population probability p∗ for the estimator p̂K in (37). The second term, ��·�, gives the contribution
of estimating p∗ to the asymptotic distribution of 
̂ew . This contribution is linear in T −p∗�X�. Hence,
the score linearizes the estimator with respect to 
 and p�·�. The asymptotic variance of 
̂ew is equal
to the variance of 
�Y �T �x�
∗�p∗�X��+��T �X� (note that its mean is 0). The three components
of this variance are

E�
�Y �T �X�
∗�p∗�·��2�= E
[
�1�X�2

p∗�X�

]
+E

[
� 2
1 �X�

p∗�X�

]
− �
∗�2�

E���T �X�2�= E
[
�1�X�2

p∗�X�

]
−E��1�X�2��

E�
�Y �T �X�
∗�p∗�·�� ·��T �X��=−E
[
�1�X�2

p∗�X�

]
+E��1�X�2��

so that

E��
�Y �T �X�
∗�p∗�·��+��T �X��2�= E��1�X�2�− �
∗�2 +E
[
� 2
1 �X�

p∗�X�

]
= V�E�Y �1��X��+E�V�Y �1��X�/p∗�X���

which is the variance in Theorem 1, specialized to the case with �0�x�= � 2
0 �x�= 0.

In the proof of (38) we rewrite the difference by adding and subtracting a number of terms, so
that we can bound the differences. We give the asymptotic order of all differences, which makes it
easier to understand the role of the assumptions. We have

√
N�
̂ew −
∗�= 1√

N

N∑
i=1

(
TiYi

p̂K�Xi�
− TiYi

p∗�Xi�
+ TiYi

p∗�Xi�
2
�p̂K�Xi�−p∗�Xi��

)
(39)

+ 1√
N

N∑
i=1

(
− TiYi

p∗�Xi�
2
�p̂K�Xi�−p∗�Xi��(40)

+
∫
X

�1�x�

p∗�x�
�p̂K�x�−p∗�x��dF0�x�

)
−√

N
∫
X

�1�x�

p∗�x�
�p̂K�x�−p∗�x��dF0�x�(41)

− 1√
N

N∑
i=1

�̃K�Xi�
Ti −pK�Xi�√

pK�Xi��1−pK�Xi��

+ 1√
N

N∑
i=1

��̃K�Xi�−�K�Xi��
Ti −pK�Xi�√

pK�Xi��1−pK�Xi��
(42)

+ 1√
N

N∑
i=1

(
�K�Xi�

Ti −pK�Xi�√
pK�Xi��1−pK�Xi��

(43)

−�0�Xi�
Ti −p∗�Xi�√

p∗�Xi��1−p∗�Xi��

)

+ 1√
N

N∑
i=1

{(
Ti ·Yi

p∗�Xi�
−
∗

)
+�0�Xi�

Ti −p∗�Xi�√
p∗�Xi��1−p∗�Xi��

}
�(44)
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In this expression F0 is the population cdf of X and

�̃K�x�=−
∫
X

�1�z�

p∗�z�
L′�RK�z�′�̃K�R

K�z�′ dF0�z��̃
−1
K

√
L′�RK�x�′�∗

K�R
K�x��(45)

�K�x�=−
∫
X

�1�z�

p∗�z�
L′�RK�z�′�∗

K�R
K�z�′ dF0�z��

−1
K

√
L′�RK�x�′�∗

K�R
K�x��(46)

�0�x�=−�1�x�

p∗�x�

√
p∗�Xi��1−p∗�Xi���(47)

with

�k = E�RK�X�RK�X�′L′�RK�X�′�∗
K� and

�̃K = 1
N

N∑
i=1

RK�Xi�R
K�Xi�

′L�RK�Xi�
′�̃K��

and �̃K between �̂K and �∗
K .

Note that (44) is equal to the linearized expression for
√
N�
̂ew −
∗�. To show that the estimator

is indeed asymptotically linear, we must derive bounds on the terms (39)–(43). If a bound depends
on both K and N , we derive the bound for sequences K�N� that go to � with N . Because during the
derivation some restrictions on these sequences are imposed, the resulting bounds are not uniform
in K. We have seen this type of argument in the derivation of the order of ��̂K�N� −�K�N�� where
we imposed the large sample identification condition ��K�N��4/N → 0.

Below we present the bounds on the terms (39)–(43). Details for the derivations for these bounds
are available from the authors (Hirano, Imbens, and Ridder (2002)). The bound for (39) is∣∣∣∣ 1√

N

N∑
i=1

(
TiYi

p̂K�Xi�
− TiYi

p∗�Xi�
+ TiYi

p∗�Xi�
2
�p̂K�Xi�−p∗�Xi��

)∣∣∣∣
=OP

(
��K�3√

N

)
+OP

(√
N��K�2K− s

r
)

+OP

(
��K�5/2K− s

2r
)
�

The bound for (40) is

1√
N

N∑
i=1

(
− TiYi

p∗�Xi�
2
�p̂K�Xi�−p∗�Xi��+

∫
X

�1�x�

p∗�x�
�p̂K�x�−p∗�x��dF0�x�

)

=OP���K�K− s
2r �+OP

(
��K�2√

N

)
�

The bound for (41) is∣∣∣∣−√
N

∫
X

�1�x�

p∗�x�
�p̂K�x�−p∗�x��dF0�x�−

1√
N

N∑
i=1

�̃K�Xi�
Ti −pK�Xi�√

pK�Xi��1−pK�Xi��

∣∣∣∣
=O

(√
N��K�K− s

2r
)
�

The bound for (42) is∣∣∣∣ 1√
N

N∑
i=1

��̂K�Xi�−�K�Xi��
Ti −pK�Xi�√

pK�Xi��1−pK�Xi��

∣∣∣∣=OP

(
��K�9/2

N 1/2

)
�
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The bound for (43) is∣∣∣∣∣ 1√
N

N∑
i=1

(
�K�Xi�

Ti −pK�Xi�√
pK�Xi��1−pK�Xi��

−�0�Xi�
Ti −p∗�Xi�√

p∗�Xi��1−p∗�Xi��

)∣∣∣∣∣
= OP

(
max

(
K− 1

2
s
r � ��K�K− s

2r
))
�

From these five expressions we obtain∣∣∣∣√N�
̂ew −
∗�− 1√
N

N∑
i=1

{(
TiYi

p∗�Xi�
−
∗

)
− �1�Xi�

p∗�Xi�
�Ti −p∗�Xi��

}∣∣∣∣(48)

= OP

(
��K�3√

N

)
+OP

(√
N��K�2K− s

r
)+OP

(
��K�5/2K− s

2r
)

+OP

(
��K�K− s

2r
)+OP

(
��K�2√

N

)
+O

(√
N��K�K− s

2r
)

+OP

(
��K�9/2√

N

)
+OP

(
max

(
K− s

2r � ��K�K− s
2r

))
= OP

(√
N��K�2K− s

r
)+OP

(
��K�5/2K− s

2r
)+OP

(
��K�9/2√

N

)
�

Note that the second term of the final expression is a bias term, the third a variance term, and the
first a combination of a variance and bias term.

As noted ��K� depends on the sequence of approximating functions. For power series we have
��K� = O�K�. If we consider sequences K�N� = Nc we can find the range of c for which (48) is
oP �1�. Substitution in the right-hand side of (48) gives that the first term on the right-hand side
requires that c > 1/�2�s/r−2��, the second that s/r > 5, and the third that c < 1/9. These inequalities
can be simultaneously satisfied if s/r ≥ 7. Q.E.D.

Proof of Theorem 2: Define

�K =− 1
N

N∑
i=1

YiTi

p∗�Xi�
2
RK�Xi��(49)

�̂K =− 1
N

N∑
i=1

YiTi

p̂K�Xi�
2
RK�Xi��(50)

ŜK = 1
N

N∑
i=1

RK�Xi�R
K�Xi�

′�(51)

Then � ′
KŜ

−1
K RK�x� is the predicted value in a least squares series regression of −YiTi/�p

∗�Xi�
2� on

RK�Xi�.13 This predicted value estimates −E�Y �x�/p∗�x�, which is the conditional expectation (given
X = x) of the derivative of the moment condition with respect to p∗. The usual bound for series
estimators applies:

sup
x∈X

∣∣∣∣� ′
KŜ

−1
K RK�x�+ �1�x�

p∗�x�

∣∣∣∣≤ C1��K�N��OP

(√
��K�

N

)
+C2K

− s′
r(52)

13 The number of terms in this series estimator need not be equal to that in the series estimator
of the propensity score. The notation can be changed to reflect this.
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with s′ the number of continuous derivatives of �1�x�. Also

∥∥�̂K −�K

∥∥=
∥∥∥∥ 1
N

N∑
i=1

�p̂K�Xi�−p∗�Xi���p
∗�Xi�+ p̂K�Xi��

p̂K�Xi�
2p∗�Xi�

2
YiTiR

K�Xi�

∥∥∥∥(53)

≤ 1
N

N∑
i=1

∣∣∣∣p∗�Xi�+ p̂K�Xi�

p̂K�Xi�
2p∗�Xi�

2

∣∣∣∣�p̂K�Xi�−p∗�Xi�� · �Yi� ·Ti ·
∥∥RK�Xi�

∥∥�
As in the proof of Theorem 1 we have that p̂K�x� is bounded from 0 and 1 on X if N → � and
hence we have the following bound for (53):

C sup
x∈X

�p̂K�x�−p∗�x�� sup
x∈X

�RK�x�� 1
N

N∑
i=1

�Yi�+oP �1�(54)

= C1��K�2OP

(√
��K�

N

)
+C2��K�2K− s

r �

We use the bounds (52) and (54) to obtain a bound on

�̂K�t� x�−��t�x�= (
�̂K −�K

)′
Ŝ−1
K RK�x��t− p̂K�x��(55)

+
[
� ′

KŜ
−1
K RK�x�+ �1�x�

p∗�x�

]
�t− p̂K�x��+

�1�x�

p∗�x�
�p̂K�x�−p∗�x���

Under the asymptotic identification condition

sup
x∈X

��̂K�t� x�−��t�x�� ≤ C1

∥∥�̂K −�K

∥∥ sup
x∈X

�RK�x��+C2 sup
x∈X

∣∣∣∣� ′
KŜ

−1
K RK�x�+ �1�x�

p∗�x�

∣∣∣∣(56)

+C3 sup
x∈X

�1�x� sup
x∈X

�p̂K�x�−p∗�x���

Because X is compact and �1�x� is continuous, supx∈X �1�x� < �. Substitution of the bounds (52)
and (54), collecting terms of the same order and omitting terms of lower order gives the bound

sup
x∈X

��̂K�t� x�−��t�x�� ≤ C1��K�3OP

(√
��K�

N

)
(57)

+C2��K�3K− s
r +C3K

− s′
r �

It can be shown that the difference between (14) and (13) is bounded by (57) (details of these
calculations are available from the authors). Under the rates specified in Theorem 1 this bound is
op�1�. Hence (14) is a consistent estimator for (13). Q.E.D.

Proof of Theorem 4: The derivation of the efficiency bound follows the proof in Hahn (1998).
We consider the case where the propensity score is known. From Theorem 3, it will be evident that
the bound can be achieved without knowledge of the propensity score.

The density of �Y �0��Y �1��T �X� with respect to some �-finite measure is

q�y�0�� y�1�� t� x�= f �y�0�� y�1��x�p∗�x�t�1−p∗�x��1−tf �x��

The density of the observed data �y� t� x�, using the unconfoundedness assumption, is

q�y� t� x�= �f1�y�x�p∗�x��t�f0�y�x��1−p∗�x���1−tf �x��

where f1�·�x�=
∫
f �y�0�� ·�x�dy�0�, and f0�·�x�=

∫
f �·� y�1��x�dy�1�. Consider a regular parametric

submodel indexed by �, with density

q�y� t� x���= �f1�y�x���p∗�x��t�f0�y�x����1−p∗�x���1−tf �x����



1186 k. hirano, g. imbens, and g. ridder

which equals q�y� t� x� for � = �0. Note that � does not enter into the term p∗�x�, because we are
assuming that the propensity score is known. The score is given by

d

d�
lnq�y�t�x���=s�y�t�x���= t ·s1�y�x���+�1−t�·s0�y�x���+sx�x����

where

s1�y�x���=
d

d�
ln f1�y�x����

s0�y�x���=
d

d�
ln f0�y�x����

sx�x���=
d

d�
ln f �x����

The tangent space of the model is the set of functions

� = �t · s1�y�x�+ �1− t� · s0�y�x�+ sx�x��

for s1� s0, and sx satisfying∫
s1�y�x�f1�y�x�dy = 0� ∀ x�∫
s0�y�x�f0�y�x�dy = 0� ∀ x�∫
sx�x�f �x�dx = 0�

We are interested in estimating

�wate ≡
∫∫

g�x�yf1�y�x�f �x�dy dx−
∫∫

g�x�yf0�y�x�f �x�dy dx∫
g�x�f �x�dx

�

So for the parametric submodel indexed by �,

�wate���≡
∫∫

g�x�yf1�y�x���f �x���dydx−
∫∫

g�x�yf0�y�x���f �x���dydx∫
g�x�f �x���dx �

We need to find a function F��y� t� x� such that for all regular parametric submodels,

��wate��0�

��
= E�F��Y �T �X�s�Y �T �X��0���

First we calculate ��wate���/��. Let �g ≡
∫
g�x�f �x�dx. Then

��wate��0�

��
= 1

�g

[∫∫
g�x�ys1�y�x��0�f1�y�x��0�f �x��0�dy dx

−
∫∫

g�x�ys0�y�x��0�f0�y�x��0�f �x��0�dy dx
]

+ 1
�g

[∫
g�x��E�Y �1�−Y�0��X = x�−�wate�

× sx�x��0�f �x��0�dx
]
�
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The following choice for F� satisfies the condition:

F��Y �T �X�= T ·g�X�

�g ·p∗�x�
�Y −E�Y �1��X��− �1−T � ·g�X�

�g · �1−p∗�x��
�Y −E�Y �0��X��

+ g�X�

�g

�E�Y �1�−Y�0��X�−�wate��

Hence �wate is pathwise differentiable. By Theorem 2, in Section 3.3 of Bickel, Klaassen, Ritov, and
Wellner (1993), the variance bound is the expected square of the projection of F��Y �T �X� on � .
Since F� ∈� , the variance bound is

E�F��Y �T �X�2�= E
[

g�X�2

��g�
2p∗�X�

V �Y �1��X�

]
+E

[
g�X�2

��g�
2�1−p∗�X��

V �Y �0��X�

]

+E
[
g�X�2

��g�
2
�E�Y �1��X�−E�Y �0��X�−�wate�

2

]
� Q�E�D�
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