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ABSTRACT
Many scientific and engineering challenges—ranging from personalized medicine to customized mar-
keting recommendations—require an understanding of treatment effect heterogeneity. In this article,
we develop a nonparametric causal forest for estimating heterogeneous treatment effects that extends
Breiman’s widely used random forest algorithm. In the potential outcomes framework with unconfound-
edness, we show that causal forests are pointwise consistent for the true treatment effect and have
an asymptotically Gaussian and centered sampling distribution. We also discuss a practical method for
constructing asymptotic confidence intervals for the true treatment effect that are centered at the causal
forest estimates. Our theoretical results rely on a generic Gaussian theory for a large family of random forest
algorithms. To our knowledge, this is the first set of results that allows any type of random forest, including
classification and regression forests, to be used for provably valid statistical inference. In experiments, we
find causal forests to be substantially more powerful than classical methods based on nearest-neighbor
matching, especially in the presence of irrelevant covariates.

1. Introduction

In many applications, we want to use data to draw inferences
about the causal effect of a treatment: examples include medical
studies about the effect of a drug on health outcomes, studies of
the impact of advertising or marketing offers on consumer pur-
chases, evaluations of the effectiveness of government programs
or public policies, and “A/B tests” (large-scale randomized
experiments) commonly used by technology firms to select
algorithms for ranking search results or making recommen-
dations. Historically, most datasets have been too small to
meaningfully explore heterogeneity of treatment effects beyond
dividing the sample into a few subgroups. Recently, however,
there has been an explosion of empirical settings where it is
potentially feasible to customize estimates for individuals.

An impediment to exploring heterogeneous treatment effects
is the fear that researchers will iteratively search for subgroups
with high treatment levels, and then report only the results for
subgroups with extreme effects, thus highlighting heterogeneity
thatmay be purely spurious (Assmann et al. 2000; Cook, Gebski,
and Keech 2004). For this reason, protocols for clinical trials
must specify in advance which subgroups will be analyzed, and
other disciplines such as economics have instituted protocols
for registering pre-analysis plans for randomized experiments
or surveys. However, such procedural restrictions can make
it difficult to discover strong but unexpected treatment effect
heterogeneity. In this article, we seek to address this challenge
by developing a powerful, nonparametric method for heteroge-
neous treatment effect estimation that yields valid asymptotic
confidence intervals for the true underlying treatment effect.

Classical approaches to nonparametric estimation of hetero-
geneous treatment effects include nearest-neighbor matching,
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kernel methods, and series estimation; see, for example, Crump
et al. (2008), Lee (2009), andWillke et al. (2012). Thesemethods
perform well in applications with a small number of covariates,
but quickly break down as the number of covariates increases.
In this article, we explore the use of ideas from the machine
learning literature to improve the performance of these classical
methods with many covariates. We focus on the family of ran-
dom forest algorithms introduced by Breiman (2001a), which
allow for flexible modeling of interactions in high dimensions
by building a large number of regression trees and averaging
their predictions. Random forests are related to kernels and
nearest-neighbor methods in that they make predictions using
a weighted average of “nearby” observations; however, random
forests differ in that they have a data-driven way to determine
which nearby observations receive more weight, something that
is especially important in environments with many covariates
or complex interactions among covariates.

Despite their widespread success at prediction and classifica-
tion, there are important hurdles that need to be cleared before
random forests are directly useful to causal inference. Ideally, an
estimator should be consistent with a well-understood asymp-
totic sampling distribution, so that a researcher can use it to
test hypotheses and establish confidence intervals. For example,
when deciding to use a drug for an individual, we may wish to
test the hypothesis that the expected benefit from the treatment
is less than the treatment cost. Asymptotic normality results
are especially important in the causal inference setting, both
because many policy applications require confidence intervals
for decision-making, and because it can be difficult to directly
evaluate the model’s performance using, for example, cross-
validation, when estimating causal effects. Yet, the asymptotics
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of random forests have been largely left open, even in the
standard regression or classification contexts.

This article addresses these limitations, developing a forest-
based method for treatment effect estimation that allows for
a tractable asymptotic theory and valid statistical inference.
Following Athey and Imbens (2016), our proposed forest is
composed of causal trees that estimate the effect of the treat-
ment at the leaves of the trees; we thus refer to our algorithm as
a causal forest.

In the interest of generality, we begin our theoretical analysis
by developing the desired consistency and asymptotic normal-
ity results in the context of regression forests. We prove these
results for a particular variant of regression forests that uses
subsampling to generate a variety of different trees, while it relies
on deeply grown trees that satisfy a condition we call “honesty”
to reduce bias. An example of an honest tree is one where
the tree is grown using one subsample, while the predictions
at the leaves of the tree are estimated using a different subsam-
ple. We also show that the heuristically motivated infinitesimal
jackknife for random forests developed by Efron (2014) and
Wager, Hastie, and Efron (2014) is consistent for the asymptotic
variance of random forests in this setting. Our proof builds
on classical ideas from Efron and Stein (1981), Hájek (1968),
and Hoeffding (1948), as well as the adaptive nearest neighbors
interpretation of random forests of Lin and Jeon (2006). Given
these general results, we next show that our consistency and
asymptotic normality results extend from the regression setting
to estimating heterogeneous treatment effects in the potential
outcomes framework with unconfoundedness (Neyman 1923;
Rubin 1974).

Although our main focus in this article is causal inference,
we note that there are a variety of important applications of the
asymptotic normality result in a pure prediction context. For
example, Kleinberg et al. (2015) sought to improve the alloca-
tion of Medicare funding for hip or knee replacement surgery
by detecting patients who had been prescribed such a surgery,
but were in fact likely to die of other causes before the surgery
would have been useful to them. Here, we need predictions for
the probability that a given patient will survive for more than,
say, one year that come with rigorous confidence statements;
our results are the first that enable the use of random forests for
this purpose.

Finally, we compare the performance of the causal forest
algorithm against classical k-nearest neighbor matching using
simulations, finding that the causal forest dominates in terms of
both bias and variance in a variety of settings, and that its advan-
tage increases with the number of covariates. We also examine
coverage rates of our confidence intervals for heterogeneous
treatment effects.

1.1. RelatedWork

There has been a longstanding understanding in the machine
learning literature that prediction methods such as random
forests ought to be validated empirically (Breiman 2001b): if the
goal is prediction, then we should hold out a test set, and the
method will be considered as good as its error rate is on this test
set. However, there are fundamental challenges with applying
a test set approach in the setting of causal inference. In the
widely used potential outcomes framework we use to formalize

our results (Neyman 1923; Rubin 1974), a treatment effect is
understood as a difference between two potential outcomes, for
example, would the patient have died if they received the drug
versus if they did not receive it. Only one of these potential
outcomes can ever be observed in practice, and so direct test-set
evaluation is in general impossible.1 Thus, when evaluating
estimators of causal effects, asymptotic theory plays a much
more important role than in the standard prediction context.

From a technical point of view, the main contribution of
this article is an asymptotic normality theory enabling us
to do statistical inference using random forest predictions.
Recent results by Biau (2012), Meinshausen (2006), Mentch and
Hooker (2016), Scornet, Biau, and Vert (2015), and others have
established asymptotic properties of particular variants and
simplifications of the random forest algorithm. To our knowl-
edge, however, we provide the first set of conditions under
which predictions made by random forests are both asymp-
totically unbiased and Gaussian, thus allowing for classical
statistical inference; the extension to the causal forests proposed
in this article is also new. We review the existing theoretical
literature on random forests in more detail in Section 3.1.

A small but growing literature, including Green and Kern
(2012), Hill (2011), and Hill and Su (2013), has considered the
use of forest-based algorithms for estimating heterogeneous
treatment effects. These articles use the Bayesian additive
regression tree (BART) method of Chipman, George, and
McCulloch (2010), and report posterior credible intervals
obtained by Markov chain Monte Carlo (MCMC) sampling
based on a convenience prior. Meanwhile, Foster, Taylor, and
Ruberg (2011) used regression forests to estimate the effect of
covariates on outcomes in treated and control groups separately,
and then take the difference in predictions as data and project
treatment effects onto units’ attributes using regression or
classification trees (in contrast, we modify the standard random
forest algorithm to focus on directly estimating heterogeneity
in causal effects). A limitation of this line of work is that, until
now, it has lacked formal statistical inference results.

We view our contribution as complementary to this litera-
ture, by showing that forest-based methods need not only be
viewed as black-box heuristics, and can instead be used for rig-
orous asymptotic analysis. We believe that the theoretical tools
developed here will be useful beyond the specific class of algo-
rithms studied in our article. In particular, our tools allow for a
fairly direct analysis of variants of the method of Foster, Taylor,
and Ruberg (2011). Using BART for rigorous statistical analysis
may prove more challenging since, although BART is often
successful in practice, there are currently no results guarantee-
ing posterior concentration around the true conditional mean
function, or convergence of the MCMC sampler in polynomial
time. Advances of this type would be of considerable interest.

Several papers use tree-basedmethods for estimating hetero-
geneous treatment effects. In growing trees to build our forest,
we follow most closely the approach of Athey and Imbens
(2016), who propose honest, causal trees, and obtain valid

 Athey and Imbens () proposed indirect approaches to mimic test-set evalu-
ation for causal inference. However, these approaches require an estimate of the
true treatment effects and/or treatment propensities for all the observations in
the test set, which creates a new set of challenges. In the absence of an observable
ground truth in a test set, statistical theory plays a more central role in evaluating
the noise in estimates of causal effects.
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confidence intervals for average treatment effects for each of the
subpopulations (leaves) identified by the algorithm. (Instead
of personalizing predictions for each individual, this approach
only provides treatment effect estimates for leaf-wise subgroups
whose size must grow to infinity.) Other related approaches
include those of Su et al. (2009) and Zeileis, Hothorn, and
Hornik (2008), which build a tree for treatment effects in
subgroups and use statistical tests to determine splits; however,
these papers do not analyze bias or consistency properties.

Finally, we note a growing literature on estimating hetero-
geneous treatment effects using different machine learning
methods. Imai and Ratkovic (2013), Signorovitch (2007), Tian
et al. (2014), and Weisberg and Pontes (2015) developed lasso-
like methods for causal inference in a sparse high-dimensional
linear setting. Beygelzimer and Langford (2009), Dudík,
Langford, and Li (2011), and others discuss procedures for
transforming outcomes that enable off-the-shelf loss minimiza-
tionmethods to be used for optimal treatment policy estimation.
In the econometrics literature, Bhattacharya and Dupas (2012),
Dehejia (2005), Hirano and Porter (2009), and Manski (2004)
estimate parametric or semiparametric models for optimal
policies, relying on regularization for covariate selection in the
case of Bhattacharya and Dupas (2012). Taddy et al. (2016)
used Bayesian nonparametric methods with Dirichlet priors to
flexibly estimate the data-generating process, and then project
the estimates of heterogeneous treatment effects down onto the
feature space using regularization methods or regression trees
to get low-dimensional summaries of the heterogeneity; but
again, there are no guarantees about asymptotic properties.

2. Causal Forests

2.1. Treatment Estimationwith Unconfoundedness

Suppose we have access to n independent and identically dis-
tributed training examples labeled i = 1, . . . , n, each of which
consists of a feature vector Xi ∈ [0, 1]d , a response Yi ∈ R,
and a treatment indicatorWi ∈ {0, 1}. Following the potential
outcomes framework of Neyman (1923) and Rubin (1974) (see
Imbens andRubin 2015 for a review), we then posit the existence
of potential outcomes Y (1)

i and Y (0)
i corresponding respectively

to the response the ith subject would have experienced with and
without the treatment, and define the treatment effect at x as

τ (x) = E
[
Y (1)
i −Y (0)

i

∣∣Xi = x
]
. (1)

Our goal is to estimate this function τ (x). The main difficulty is
that we can only ever observe one of the two potential outcomes
Y (0)
i , Y (1)

i for a given training example, and so cannot directly
train machine learning methods on differences of the form
Y (1)
i −Y (0)

i .
In general, we cannot estimate τ (x) simply from the

observed data (Xi, Yi, Wi) without further restrictions on the
data-generating distribution. A standard way to make progress
is to assume unconfoundedness (Rosenbaum and Rubin 1983),
that is, that the treatment assignmentWi is independent of the
potential outcomes forYi conditional on Xi:{

Y (0)
i , Y (1)

i
} ⊥⊥ Wi

∣∣ Xi. (2)

The motivation behind this unconfoundedness is that, given
continuity assumptions, it effectively implies that we can treat
nearby observations in x-space as having come from a random-
ized experiment; thus, nearest-neighbor matching and other
local methods will in general be consistent for τ (x).

An immediate consequence of unconfoundedness is that

E

[
Yi

(
Wi

e(x)
− 1 −Wi

1 − e(x)

) ∣∣Xi = x
]

= τ (x), where

e(x) = E[Wi |Xi = x] (3)

is the propensity of receiving treatment at x. Thus, if we knew
e(x), we would have access to a simple unbiased estimator for
τ (x); this observation lies at the heart of methods based on
propensity weighting (e.g., Hirano, Imbens, and Ridder 2003).
Many early applications of machine learning to causal infer-
ence effectively reduce to estimating e(x) using, for example,
boosting, a neural network, or even random forests, and then
transforming this into an estimate for τ (x) using (3) (e.g.,
McCaffrey, Ridgeway, and Morral 2004; Westreich, Lessler, and
Funk 2010). In this article, we take a more indirect approach: we
show that, under regularity assumptions, causal forests can use
the unconfoundedness assumption (2) to achieve consistency
without needing to explicitly estimate the propensity e(x).2

2.2. FromRegression Trees to Causal Trees and Forests

At a high level, trees and forests can be thought of as nearest
neighbor methods with an adaptive neighborhood metric.
Given a test point x, classical methods such as k-nearest
neighbors seek the k closest points to x according to some pre-
specified distance measure, for example, Euclidean distance. In
contrast, tree-basedmethods also seek to find training examples
that are close to x, but now closeness is defined with respect to
a decision tree, and the closest points to x are those that fall in
the same leaf as it. The advantage of trees is that their leaves can
be narrower along the directions where the signal is changing
fast and wider along the other directions, potentially leading a
to a substantial increase in power when the dimension of the
feature space is even moderately large.

In this section, we seek to build causal trees that resemble
their regression analogues as closely as possible. Suppose first
that we only observe independent samples (Xi, Yi), and want to
build a CART regression tree. We start by recursively splitting
the feature space until we have partitioned it into a set of leavesL,
each of which only contains a few training samples. Then, given
a test point x, we evaluate the prediction μ̂(x) by identifying the
leaf L(x) containing x and setting

μ̂(x) = 1
|{i : Xi ∈ L(x)}|

∑
{i:Xi∈L(x)}

Yi. (4)

Heuristically, this strategy is well-motivated if we believe the leaf
L(x) to be small enough that the responses Yi inside the leaf
are roughly identically distributed. There are several procedures
for how to place the splits in the decision tree; see, for example,
Hastie, Tibshirani, and Friedman (2009).

 In follow-up work, Athey, Tibshirani, and Wager () adapted the causal for-
est algorithm, enabling it to make use of propensity score estimates ê(x) for
improved robustness.
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In the context of causal trees, we analogously want to think of
the leaves as small enough that the (Yi, Wi) pairs corresponding
to the indices i for which i ∈ L(x) act as though they had come
from a randomized experiment. Then, it is natural to estimate
the treatment effect for any x ∈ L as

τ̂ (x) = 1
|{i :Wi = 1, Xi ∈ L}|

Yi∑
{i:Wi=1,Xi∈L}

− 1
|{i :Wi = 0, Xi ∈ L}|

Yi.∑
{i:Wi=0,Xi∈L}

. (5)

In the following sections, we will establish that such trees can be
used to grow causal forests that are consistent for τ (x).3

Finally, given a procedure for generating a single causal tree,
a causal forest generates an ensemble of B such trees, each of
which outputs an estimate τ̂b(x). The forest then aggregates
their predictions by averaging them: τ̂ (x) = B−1 ∑B

b=1 τ̂b(x).
We always assume that the individual causal trees in the for-
est are built using random subsamples of s training examples,
where s/n � 1; for our theoretical results, we will assume that
s � nβ for some β < 1. The advantage of a forest over a single
tree is that it is not always clear what the “best” causal tree is.
In this case, as shown by Breiman (2001a), it is often better to
generate many different decent-looking trees and average their
predictions, instead of seeking a single highly-optimized tree.
In practice, this aggregation scheme helps reduce variance and
smooths sharp decision boundaries (Bühlmann and Yu 2002).

2.3. Asymptotic Inferencewith Causal Forests

Our results require some conditions on the forest-growing
scheme: the trees used to build the forest must be grown on
subsamples of the training data, and the splitting rule must not
“inappropriately” incorporate information about the outcomes
Yi as discussed formally in Section 2.4. However, given these
high level conditions, we obtain a widely applicable consistency
result that applies to several different interesting causal forest
algorithms.

Our first result is that causal forests are consistent for the true
treatment effect τ (x). To achieve pointwise consistency, we need
to assume that the conditional mean functions E[Y (0)

∣∣X = x]
and E[Y (1)

∣∣X = x] are both Lipschitz continuous. To our
knowledge, all existing results on pointwise consistency of
regression forests (e.g., Biau 2012; Meinshausen 2006) require
an analogous condition on E[Y

∣∣X = x]. This is not partic-
ularly surprising, as forests generally have smooth response
surfaces (Bühlmann and Yu 2002). In addition to continuity
assumptions, we also need to assume that we have overlap, that
is, for some ε > 0 and all x ∈ [0, 1]d ,

ε < P[W = 1 |X = x] < 1 − ε. (6)

 The causal tree algorithm presented above is a simplification of the method of
Athey and Imbens (). The main difference between our approach and that
of Athey and Imbens () is that they seek to build a single well-tuned tree; to
this end, they use fairly large leaves and apply a form propensity weighting based
on () within each leaf to correct for variations in e(x) inside the leaf. In contrast,
we follow Breiman (a) and build our causal forest using deep trees. Since our
leaves are small, we do not need to apply any additional corrections inside them.

This condition effectively guarantees that, for large enough n,
there will be enough treatment and control units near any test
point x for local methods to work.

Beyond consistency, to do statistical inference on the basis
of the estimated treatment effects τ̂ (x), we need to under-
stand their asymptotic sampling distribution. Using the poten-
tial nearest neighbors construction of Lin and Jeon (2006) and
classical analysis tools going back toHoeffding (1948) andHájek
(1968), we show that—provided the subsample size s scales
appropriately with n—the predictions made by a causal forest
are asymptotically Gaussian and unbiased. Specifically, we show
that

(τ̂ (x) − τ (x))
/ √

Var[τ̂ (x)] ⇒ N (0, 1) (7)

under the conditions required for consistency, provided the sub-
sample size s scales as s � nβ for some βmin < β < 1

Moreover, we show that the asymptotic variance of causal
forests can be accurately estimated. To do so, we use the
infinitesimal jackknife for random forests developed by Efron
(2014) and Wager, Hastie, and Efron (2014), based on the
original infinitesimal jackknife procedure of Jaeckel (1972).
This method assumes that we have taken the number of trees B
to be large enough that the Monte Carlo variability of the forest
does not matter; and only measures the randomness in τ̂ (x)
due to the training sample.

To define the variance estimates, let τ̂ ∗
b (x) be the treatment

effect estimate given by the bth tree, and letN∗
ib ∈ {0, 1} indicate

whether or not the ith training example was used for the bth
tree.4 Then, we set

V̂IJ (x) = n − 1
n

(
n

n − s

)2 n∑
i=1

Cov∗[τ̂ ∗
b (x), N∗

ib]
2, (8)

where the covariance is taken with respect to the set of all
the trees b = 1, . . . ,B used in the forest. The term n(n −
1)/(n − s)2 is a finite-sample correction for forests grown by
subsampling without replacement; see Proposition 5. We show
that this variance estimate is consistent, in the sense that
V̂IJ (x)/Var[τ̂ (x)] →p 1.

2.4. Honest Trees and Forests

In our discussion so far, we have emphasized the flexible nature
of our results: for a wide variety of causal forests that can be tai-
lored to the application area, we achieve both consistency and
centered asymptotic normality, provided the subsample size s
scales at an appropriate rate. Our results do, however, require
the individual trees to satisfy a fairly strong condition, which we
call honesty: a tree is honest if, for each training example i, it
only uses the response Yi to estimate the within-leaf treatment
effect τ using (5) or to decide where to place the splits, but not
both. We discuss two causal forest algorithms that satisfy this
condition.

Our first algorithm, which we call a double-sample tree,
achieves honesty by dividing its training subsample into two
halves I and J . Then, it uses the J -sample to place the splits,
while holding out the I-sample to do within-leaf estimation; see

 For double-sample trees defined in Procedure , N∗
ib = 1 if the ith example

appears in either the I-sample or theJ -sample.
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Procedure 1 for details. In our experiments, we set theminimum
leaf size to k = 1. A similar family of algorithms was discussed
in detail byDenil,Matheson, andDe Freitas (2014), who showed
that such forests could achieve competitive performance relative
to standard tree algorithms that do not divide their training sam-
ples. In the semiparametric inference literature, related ideas go
back at least to the work of Schick (1986).

We note that sample splitting procedures are sometimes crit-
icized as inefficient because they “waste” half of the training data
at each step of the estimation procedure. However, in our case,
the forest subampling mechanism enables us to achieve honesty
without wasting any data in this sense, because we rerandom-
ize the I/J -data splits over each subsample. Thus, although no
data point can be used for split selection and leaf estimation in
a single tree, each data point will participate in both I and J
samples of some trees, and sowill be used for both specifying the
structure and treatment effect estimates of the forest. Although
our originalmotivation for considering double-sample trees was
to eliminate bias and thus enable centered confidence intervals,
we find that in practice, double-sample trees can improve upon
standard random forests in terms ofmean-squared error as well.

Procedure 1. Double-Sample Trees
Double-sample trees split the available training data into two

parts: one half for estimating the desired response inside
each leaf, and another half for placing splits.

Input: n training examples of the form (Xi, Yi) for regression
trees or (Xi, Yi, Wi) for causal trees, where Xi are features,Yi
is the response, andWi is the treatment assignment. A mini-
mum leaf size k.

1. Draw a random subsample of size s from {1, . . . , n}
without replacement, and then divide it into two dis-
joint sets of size |I| = 	s/2
 and |J | = �s/2�.

2. Grow a tree via recursive partitioning. The splits are
chosen using any data from the J sample and X- or
W -observations from theI sample, butwithout using
Y -observations from the I-sample.

3. Estimate leafwise responses using only the I-sample
observations.

Double-sample regression trees make predictions μ̂(x) using
(4) on the leaf containing x, only using the I-sample
observations. The splitting criteria is the standard for
CART regression trees (minimizing mean-squared error
of predictions). Splits are restricted so that each leaf of the
tree must contain k or more I-sample observations.

Double-sample causal trees are defined similarly, except that
for prediction we estimate τ̂ (x) using (5) on the I sam-
ple. Following Athey and Imbens (2016), the splits of the
tree are chosen by maximizing the variance of τ̂ (Xi) for
i ∈ J ; see Remark 1 for details. In addition, each leaf of
the tree must contain k or more I-sample observations of
each treatment class.

Another way to build honest trees is to ignore the outcome
data Yi when placing splits, and instead first train a classifica-
tion tree for the treatment assignmentsWi (Procedure 2). Such

propensity trees can be particularly useful in observational stud-
ies, where we want to minimize bias due to variation in e(x).
Seeking estimators that match training examples based on esti-
mated propensity is a longstanding idea in causal inference,
going back to Rosenbaum and Rubin (1983).5

Procedure 2. Propensity Trees
Propensity trees use only the treatment assignment indicator

Wi to place splits, and save the responsesYi for estimating
τ .

Input: n training examples (Xi, Yi, Wi), where Xi are fea-
tures, Yi is the response, andWi is the treatment assign-
ment. A minimum leaf size k.

1. Draw a random subsample I ∈ {1, . . . , n} of size
|I| = s (no replacement).

2. Train a classification tree using sample I where the
outcome is the treatment assignment, that is, on the
(Xi, Wi) pairs with i ∈ I . Each leaf of the tree must
have k or more observations of each treatment class.

3. Estimate τ (x) using (5) on the leaf containing x.

In step 2, the splits are chosen by optimizing, for example, the
Gini criterion used by CART for classification (Breiman
et al. 1984).

Remark 1. For completeness, we briefly outline the motivation
for the splitting rule of Athey and Imbens (2016) we use for
our double-sample trees. This method is motivated by an algo-
rithm for minimizing the squared-error loss in regression trees.
Because regression trees compute predictions μ̂ by averaging
training responses over leaves, we can verify that∑

i∈J
(μ̂(Xi) −Yi)2 =

∑
i∈J

Y 2
i −

∑
i∈J

μ̂(Xi)
2. (9)

Thus, finding the squared-error minimizing split is equiv-
alent to maximizing the variance of μ̂(Xi) for i ∈ J ; note
that

∑
i∈J μ̂(Xi) = ∑

i∈J Yi for all trees, and so maximizing
variance is equivalent to maximizing the sum of the μ̂(Xi)

2. In
Procedure 1, we emulate this algorithm by picking splits that
maximize the variance of τ̂ (Xi) for i ∈ J .6

Remark 2. In Appendix B, we present evidence that adaptive
forests with small leaves can overfit to outliers in ways that
make them inconsistent near the edges of sample space. Thus,
the forests of Breiman (2001a) need to be modified in some
way to get pointwise consistency results; here, we use honesty
following, for example, Wasserman and Roeder (2009). We note
that there have been some recent theoretical investigations of
non-honest forests, including Scornet, Biau, and Vert (2015)
and Wager and Walther (2015). However, Scornet, Biau, and
Vert (2015) do not consider pointwise properties of forests;

 While this article was in press, we became aware of work by Wang et al. (),
who use what we call propensity forests for average treatment effect estimation.

 Athey and Imbens () also considered “honest splitting rules” that anticipate
honest estimation, and correct for the additional sampling variance in small leaves
using an idea closely related to theCp penalty ofMallows (). Although it could
be of interest for further work, we do not study the effect of such splitting rules
here.
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whereas Wager and Walther (2015) showed consistency of
adaptive forests with larger leaves, but their bias bounds decay
slower than the sampling variance of the forests and so cannot
be used to establish centered asymptotic normality.

3. Asymptotic Theory for Random Forests

To use random forests to provide formally valid statistical
inference, we need an asymptotic normality theory for random
forests. In the interest of generality, we first develop such a
theory in the context of classical regression forests, as originally
introduced by Breiman (2001a). In this section, we assume that
we have training examples Zi = (Xi, Yi) for i = 1, . . . , n, a
test point x, and we want to estimate true conditional mean
function

μ(x) = E[Y |X = x]. (10)

We also have access to a regression tree T which can be used to
get estimates of the conditional mean function at x of the form
T (x; ξ, Z1, . . . , Zn), where ξ ∼ � is a source of auxiliary ran-
domness. Our goal is to use this tree-growing scheme to build
a random forest that can be used for valid statistical inference
about μ(x).

We begin by precisely describing how we aggregate individ-
ual trees into a forest. For us, a random forest is an average of
trees trained over all possible size-s subsamples of the training
data, marginalizing over the auxiliary noise ξ . In practice, we
compute such a random forest by Monte Carlo averaging, and
set

RF(x; Z1, . . . , Zn) ≈ 1
B

B∑
b=1

T (x; ξ ∗
b , Z∗

b1, . . . , Z∗
bs), (11)

where {Z∗
b1, . . . , Z∗

bs} is drawn without replacement from
{Z1, . . . , Zn}, ξ ∗

b is a random draw from�, and B is the number
of Monte Carlo replicates we can afford to perform. The formu-
lation (12) arises as the B → ∞ limit of (11); thus, our theory
effectively assumes thatB is large enough forMonte Carlo effects
not to matter. The effects of using a finite B are studied in detail
byMentch andHooker (2016); see alsoWager, Hastie, and Efron
(2014), who recommend taking B on the order of n.

Definition 1. The random forestwith base learnerT and subsam-
ple size s is

RF(x; Z1, . . . , Zn) =
(
n
s

)−1 ∑
1≤i1<i2<...<is≤n

Eξ∼�

× [
T (x; ξ, Zi1 , · · · , Zis )

]
. (12)

Next, as described in Section 2, we require that the trees T
in our forest be honest. Double-sample trees, as defined in Pro-
cedure 1, can always be used to build honest trees with respect
to the I-sample. In the context of causal trees for observational
studies, propensity trees (Procedure 2) provide a simple recipe
for building honest trees without sample splitting.

Definition 2. A tree grown on a training sample
(Z1 = (X1, Y1), . . . , Zs = (Xs, Ys)) is honest if (a) (stan-
dard case) the tree does not use the responses Y1, . . . , Ys in

choosing where to place its splits; or (b) (double sample case)
the tree does not use the I-sample responses for placing splits.

To guarantee consistency, we also need to enforce that the
leaves of the trees become small in all dimensions of the fea-
ture space as n gets large.7 Here, we followMeinshausen (2006),
and achieve this effect by enforcing some randomness in theway
trees choose the variables they split on: at each step, each vari-
able is selected with probability at leastπ/d for some 0 < π ≤ 1
(e.g., we could satisfy this condition by completely randomizing
the splitting variable with probability π). Formally, the random-
ness in how to pick the splitting features is contained in the aux-
iliary random variable ξ .

Definition 3. A tree is a random-split tree if at every step of the
tree-growing procedure, marginalizing over ξ , the probability
that the next split occurs along the jth feature is bounded below
by π/d for some 0 < π ≤ 1, for all j = 1, . . . , d.

The remaining definitions are more technical. We use
regularity to control the shape of the tree leaves, while sym-
metry is used to apply classical tools in establishing asymptotic
normality.

Definition 4. A tree predictor grown by recursive partitioning is
α-regular for some α > 0 if either (a) (standard case) each split
leaves at least a fraction α of the available training examples on
each side of the split and, moreover, the trees are fully grown to
depth k for some k ∈ N, that is, there are between k and 2k − 1
observations in each terminal node of the tree; or (b) (double
sample case) if the predictor is a double-sample tree as in Proce-
dure 1, the tree satisfies part (a) for the I sample.

Definition 5. A predictor is symmetric if the (possibly random-
ized) output of the predictor does not depend on the order
(i = 1, 2, . . .) in which the training examples are indexed.

Finally, in the context of classification and regression forests,
we estimate the asymptotic variance of random forests using
the original infinitesimal jackknife of Wager, Hastie, and Efron
(2014), that is,

V̂IJ (x) = n − 1
n

(
n

n − s

)2 n∑
i=1

cov∗[μ̂∗
b(x), N

∗
ib]

2, (13)

where μ̂∗
b(x) is the estimate for μ(x) given by a single

regression tree. We note that the finite-sample correction
n(n − 1)/(n − s)2 did not appear in Wager, Hastie, and
Efron (2014), as their article focused on subsampling with
replacement, whereas this correction is only appropriate for
subsampling without replacement.

Given these preliminaries, we can state ourmain result on the
asymptotic normality of random forests. As discussed in Section
2.3, we require that the conditional mean function μ(x) =
E[Y

∣∣X = x] be Lipschitz continuous. The asymptotic normal-
ity result requires for the subsample size s to scale within the
bounds given in (14). If the subsample size grows slower than

 Biau () and Wager and Walther () considered the estimation of low-
dimensional signals embedded in a high-dimensional ambient space using ran-
dom forests; in this case, the variable selection properties of trees also become
important. We leave a study of asymptotic normality of random forests in high
dimensions to future work.
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this, the forest will still be asymptotically normal, but the forest
may be asymptotically biased. For clarity, we state the following
result with notation that makes the dependence of μ̂n(x) and sn
on n explicit; in most of the article, however, we drop the sub-
scripts to μ̂n(x) and sn when there is no risk of confusion.

Theorem 3.1. Suppose that we have n independent and identi-
cally distributed training examples Zi = (Xi, Yi) ∈ [0, 1]d × R.
Suppose moreover that the features are independently and uni-
formly distributed8 Xi ∼ U ([0, 1]d ), thatμ(x) = E[Y

∣∣X = x]
and μ2(x) = E[Y 2

∣∣X = x] are Lipschitz-continuous, and
finally that Var[Y

∣∣X = x] > 0 and E[|Y − E[Y
∣∣X =

x]|2+δ
∣∣X = x] ≤ M for some constants δ, M > 0, uniformly

over all x ∈ [0, 1]d . Given this data-generating process, let T
be an honest, α-regular with α ≤ 0.2, and symmetric random-
split tree in the sense of Definitions 2–5, and let μ̂n(x) be the
estimate for μ(x) given by a random forest with base learner
T and a subsample size sn. Finally, suppose that the subsample
size sn scales as

sn � nβ for some βmin := 1 −
(
1 + d

π

log(α−1)

log((1 − α)−1)

)−1

< β < 1.

(14)
Then, random forest predictions are asymptotically Gaussian:

μ̂n(x) − μ(x)
σn(x)

⇒ N (0, 1) for a sequence σn(x) → 0.

(15)
Moreover, the asymptotic variance σn can be consistently esti-
mated using the infinitesimal jackknife (8):

V̂IJ (x)
/
σ 2
n (x) →p 1. (16)

Remark 3 (binary classification). We note that Theorem 3.1 also
holds for binary classification forests with leaf size k = 1, as is
default in the R package randomForest (Liaw and Wiener
2002). Here, we treat the output RF(x) of the random forests as
an estimate for the probability P[Y = 1

∣∣X = x]; Theorem 3.1
then lets us construct valid confidence intervals for this proba-
bility. For classification forests with k > 1, the proof of Theorem
3.1 still holds if the individual classification trees are built by
averaging observations within a leaf, but not if they are built
by voting. Extending our results to voting trees is left as further
work.

The proof of this result is organized as follows. In Section 3.2,
we provide bounds for the bias E[μ̂n(x) − μ(x)] of random
forests, while Section 3.3 studies the sampling distributions
of μ̂n(x) − E[μ̂n(x)] and establishes Gaussianity. Given a
subsampling rate satisfying (14), the bias decays faster than the
variance, thus allowing for (15). Before beginning the proof,
however, we relate our result to existing results about random
forests in Section 3.1.

3.1. Theoretical Background

There has been considerable work in understanding the theoret-
ical properties of random forests. The convergence and consis-
tency properties of trees and random forests have been studied

 The result also holds with a density that is bounded away from  and infinity;
however, we assume uniformity for simpler exposition.

by, amongothers, Biau (2012), Biau,Devroye, andLugosi (2008),
Breiman (2004), Breiman et al. (1984), Meinshausen (2006),
Scornet, Biau, and Vert (2015), Wager and Walther (2015), and
Zhu, Zeng, and Kosorok (2015). Meanwhile, their sampling
variability has been analyzed by Duan (2011), Lin and Jeon
(2006), Mentch and Hooker (2016), Sexton and Laake (2009),
and Wager, Hastie, and Efron (2014). However, to our knowl-
edge, our Theorem 3.1 is the first result establishing conditions
under which predictions made by random forests are asymptot-
ically unbiased and normal.

Probably the closest existing result is that of Mentch and
Hooker (2016), who showed that random forests based on sub-
sampling are asymptotically normal under substantially strong
conditions than us: they require that the subsample size s grows
slower than

√
n, that is, that sn/

√
n → 0. However, under these

conditions, random forests will not in general be asymptotically
unbiased. As a simple example, suppose that d = 2, thatμ(x) =
‖x‖1, and that we evaluate an honest random forest at x = 0. A
quick calculation shows that the bias of the random forest decays
as 1/

√
sn, while its variance decays as sn/n. If sn/

√
n → 0, the

squared bias decays slower than the variance, and so confidence
intervals built using the resulting Gaussian limit distribution
will not cover μ(x). Thus, although the result of Mentch and
Hooker (2016) may appear qualitatively similar to ours, it can-
not be used for valid asymptotic statistical inference aboutμ(x).

The variance estimator V̂IJ was studied in the context of ran-
dom forests by Wager, Hastie, and Efron (2014), who showed
empirically that the method worked well for many problems of
interest. Wager, Hastie, and Efron (2014) also emphasized that,
when using V̂IJ in practice, it is important to account for Monte
Carlo bias. Our analysis provides theoretical backing to these
results, by showing that V̂IJ is in fact a consistent estimate for the
variance σ 2

n (x) of random forest predictions. The earlier work
on this topic (Efron 2014; Wager, Hastie, and Efron 2014) had
only motivated the estimator V̂IJ by highlighting connections
to classical statistical ideas, but did not establish any formal
justification for it.

Instead of using subsampling, Breiman originally described
random forests in terms of bootstrap sampling, or bagging
(Breiman 1996). Random forests with bagging, however, have
proven to be remarkably resistant to classical statistical analysis.
As observed by Buja and Stuetzle (2006), Chen and Hall (2003),
Friedman and Hall (2007) and others, estimators of this form
can exhibit surprising properties even in simple situations;
meanwhile, using subsampling rather than bootstrap sampling
has been found to avoid several pitfalls (e.g., Politis, Romano,
and Wolf 1999). Although they are less common in the liter-
ature, random forests based on subsampling have also been
occasionally studied and found to have good practical and the-
oretical properties (e.g., Bühlmann and Yu 2002; Mentch and
Hooker 2016; Scornet, Biau, and Vert 2015; Strobl et al. 2007).

Finally, an interesting question for further theoretical study
is to understand the optimal scaling of the subsample size sn
for minimizing the mean-squared error of random forests.
For subsampled nearest-neighbors estimation, the optimal rate
for sn is sn � n1−(1+d/4)−1 (Biau, Cérou, and Guyader 2010;
Samworth 2012). Here, our specific value for βmin depends on
the upper bounds for bias developed in the following section.
Now, as shown by Biau (2012), under some sparsity assumptions
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on μ(x), it is possible to get substantially stronger bounds for
the bias of random forests; thus, it is plausible that under similar
conditions we could push back the lower bound βmin on the
growth rate of the subsample size.

3.2. Bias and Honesty

We start by bounding the bias of regression trees. Our approach
relies on showing that as the sample size s available to the tree
gets large, its leaves get small; Lipschitz-continuity of the condi-
tional mean function and honesty then let us bound the bias.
To state a formal result, define the diameter diam(L(x)) of a
leaf L(x) as the length of the longest segment contained inside
L(x), and similarly let diam j(L(x)) denote the length of the
longest such segment that is parallel to the jth axis. The follow-
ing lemma is a refinement of a result of Meinshausen (2006),
who showed that diam(L(x)) →p 0 for regular trees.

Lemma 1. Let T be a regular, random-split tree and let
L(x) denote its leaf containing x. Suppose that X1, . . . , Xs ∼
U ([0, 1]d ) independently. Then, for any 0 < η < 1, and for
large enough s,

P

⎡
⎢⎣diam j (L(x)) ≥

(
s

2k − 1

)− 0.99 (1−η) log((1−α)−1)
log(α−1)

π
d

⎤
⎥⎦

≤
(

s
2k − 1

)− η2
2

1
log(α−1)

π
d

.

This lemma then directly translates into a bound on the
bias of a single regression tree. Since a forest is an average of
independently-generated trees, the bias of the forest is the same
as the bias of a single tree.

Theorem 3.2. Under the conditions of Lemma 1, suppose more-
over thatμ(x) is Lipschitz continuous and that the treesT in the
random forest are honest. Then, provided that α ≤ 0.2, the bias
of the random forest at x is bounded by

|E[μ̂(x)] − μ(x)| = O
(
s−

1
2
log((1−α)−1 )

log(α−1)
π
d

)
;

the constant in theO-bound is given in the proof.

3.3. Asymptotic Normality of Random Forests

Our analysis of the asymptotic normality of random forests
builds on ideas developed by Hoeffding (1948) and Hájek
(1968) for understanding classical statistical estimators such as
U -statistics. We begin by briefly reviewing their results to give
some context to our proof. Given a predictor T and indepen-
dent training examples Z1, . . . , Zn, the Hájek projection of T is
defined as

T̊ = E[T ] +
n∑

i=1

(E[T |Zi] − E[T ]). (17)

In other words, the Hájek projection of T captures the first-
order effects in T . Classical results imply that var[T̊] ≤ var[T ],
and further:

lim
n→∞ var[T̊ ]

/
var[T ] = 1 implies that lim

n→∞E

×
[∥∥T̊ − T

∥∥2
2

] /
var[T ] = 0. (18)

Since the Hájek projection T̊ is a sum of independent random
variables, we should expect it to be asymptotically normal under
weak conditions. Thus, whenever the ratio of the variance of T̊
to that of T tends to 1, the theory of Hájek projections almost
automatically guarantees that T will be asymptotically normal.9

If T is a regression tree, however, the condition from (18)
does not apply, and we cannot use the classical theory of Hájek
projections directly. Our analysis is centered around a weaker
form of this condition, which we call ν-incrementality.With our
definition, predictorsT towhichwe can apply the argument (18)
directly are 1-incremental.

Definition 6. The predictor T is ν(s)-incremental at x if

var[T̊ (x; Z1, . . . , Zs)]
/
var[T (x; Z1, . . . , Zs)] � ν(s),

where T̊ is the Hájek projection of T (17). In our notation,

f (s) � g(s) means that lim inf
s→∞ f (s)

/
g(s) ≥ 1.

Our argument proceeds in two steps. First, we establish
lower bounds for the incrementality of regression trees in
Section 3.3.1. Then, in Section 3.3.2 we show how we can turn
weakly incremental predictors T into 1-incremental ensembles
by subsampling (Lemma 4), thus bringing us back into the
realm of classical theory. We also establish the consistency of
the infinitesimal jackknife for random forests. Our analysis of
regression trees ismotivated by the “potential nearest neighbors”
model for random forests introduced by Lin and Jeon (2006);
the key technical device used in Section 3.3.2 is the ANOVA
decomposition of Efron and Stein (1981). The discussion of the
infinitesimal jackknife for random forest builds on results of
Efron (2014) and Wager, Hastie, and Efron (2014).

... Regression Trees and Incremental Predictors
Analyzing specific greedy tree models such as CART trees can
be challenging. We thus follow the lead of Lin and Jeon (2006),
and analyze amore general class of predictors—potential nearest
neighbors predictors—that operate by doing a nearest-neighbor
search over rectangles; see also Biau and Devroye (2010). The
study of potential (or layered) nearest neighbors goes back at
least to Barndorff-Nielsen and Sobel (1966).

Definition 7. Consider a set of points X1, . . . , Xs ∈ R
d and a

fixed x ∈ R
d . A point Xi is a potential nearest neighbor (PNN) of

x if the smallest axis-aligned hyperrectangle with vertices x and
Xi contains no other points Xj. Extending this notion, a PNN
k-set of x is a set of points  ⊆ {X1, . . . , Xs} of size k ≤ |L| <

2k − 1 such that there exists an axis aligned hyperrectangle L
containing x, , and no other training points. A training exam-
ple Xi is called a k-PNN of x if there exists a PNN k-set of x con-
tainingXi. Finally, a predictor T is a k-PNN predictor over {Z} if,
 The moments defined in () depend on the data-generating process for the Zi ,
and so cannot be observed in practice. Thus, the Hájek projection is mostly useful
as an abstract theoretical tool. For a review of classical projection arguments, see
Chapter  of Van der Vaart ().
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given a training set

{Z} = {(X1, Y1), . . . , (Xs, Ys)} ∈ {Rd × Y}s

and a test point x ∈ R
d , T always outputs the average of the

responsesYi over a k-PNN set of x.

This formalism allows us to describe a wide variety of tree
predictors. For example, as shown by Lin and Jeon (2006), any
decision tree T that makes axis-aligned splits and has leaves of
size between k and 2k − 1 is a k-PNNpredictor. In particular, the
base learners originally used by Breiman (2001a), namely CART
trees grown up to a leaf size k (Breiman et al. 1984), are k-PNN
predictors. Predictionsmade by k-PNNpredictors can always be
written as

T (x; ξ, Z1, . . . , Zs) =
s∑

i=1

SiYi, (19)

where Si is a selection variable that takes the value 1/|{i : Xi ∈
L(x)}| for indices i in the selected leaf-set L(x) and 0 for all other
indices. If the tree is honest, we know in addition that, for each
i, Si is independent ofYi conditional on Xi.

An important property of k-PNN predictors is that we can
often get a good idea about whether Si is nonzero even if we
only get to see Zi; more formally, as we show below, the quantity
s var[E[S1

∣∣Z1]] cannot get too small. Establishing this fact is a
key step in showing that k-PNNs are incremental. In the follow-
ing result, T can be an arbitrary symmetric k-PNN predictor.

Lemma 3.2. Suppose that the observations X1, X2, . . . are inde-
pendent and identically distributed on [0, 1]d with a density f
that is bounded away from infinity, and let T be any symmetric
k-PNN predictor. Then, there is a constantCf , d depending only
on f and d such that, as s gets large,

s var[E[S1 |Z1]] �
1
k
Cf , d/ log(s)d, (20)

where Si is the indicator for whether the observation is selected
in the subsample. When f is uniform over [0, 1]d , the bound
holds withCf , d = 2−(d+1)(d − 1)!.

When k = 1we see that,marginally, S1 ∼ Bernoulli(1/s) and
so s var[S1] ∼ 1; more generally, a similar calculation shows that
1/(2k − 1) � s var[S1] � 1/k. Thus, (20) can be interpreted as
a lower bound on how much information Z1 contains about the
selection event S1.

Thanks to this result, we are now ready to show that all honest
and regular random-split trees are incremental. Notice that any
symmetric k-regular tree following Definition 4 is also a sym-
metric k-PNN predictor.

Theorem 3.3. Suppose that the conditions of Lemma 3.2 hold
and that T is an honest k-regular symmetric tree in the sense
of Definitions 2 (part a), 4 (part a), and 5. Suppose moreover
that the conditionalmomentsμ(x) andμ2(x) are both Lipschitz
continuous at x. Finally, suppose that var[Y

∣∣X = x] > 0. Then
T is ν(s)-incremental at x with

ν (s) = Cf , d
/
log(s)d, (21)

whereCf , d is the constant from Lemma 3.2.

Finally, the result of Theorem 3.3 also holds for double-
sample trees of the form described in Procedure 1. To establish
the following result, we note that a double-sample tree is an hon-
est, symmetric k-PNN predictor with respect to the I-sample,
while all the data in the J -sample can be folded into the auxil-
iary noise term ξ ; the details are worked out in the proof.

Corollary 3. Under the conditions of Theorem 3.3, suppose
that T is instead a double-sample tree (Procedure 1) satisfy-
ing Definitions 2 (part b), 4 (part b), and 5. Then, T is ν-
incremental, with ν(s) = Cf , d/(4 log(s)d ).

... Subsampling Incremental Base Learners
In the previous section, we showed that decision trees are
ν-incremental, in that the Hájek projection T̊ of T preserves
at least some of the variation of T . In this section, we show
that randomly subsampling ν-incremental predictors makes
them 1-incremental; this then lets us proceed with a classical
statistical analysis. The following lemma, which flows directly
from the ANOVA decomposition of Efron and Stein (1981),
provides a first motivating result for our analysis.

Lemma 3.3. Let μ̂(x) be the estimate for μ(x) generated by a
random forest with base learner T as defined in (12), and let ˚̂μ
be the Hájek projection of μ̂ (17). Then

E[(μ̂(x) − ˚̂μ(x))2] ≤
( s
n

)2
var[T (x; ξ, Z1, . . . , Zs)]

whenever the variance var[T ] of the base learner is finite.

This technical result paired with Theorem 3.3 or Corollary 3
leads to an asymptotic Gaussianity result; from a technical point
of view, it suffices to check Lyapunov-style conditions for the
central limit theorem.

Theorem 3.4. Let μ̂(x) be a random forest estimator trained
according the conditions of Theorem 3.3 or Corollary 3. Sup-
pose, moreover, that the subsample size sn satisfies

lim
n→∞ sn = ∞ and lim

n→∞ sn log (n)d
/
n = 0,

and that E[|Y − E[Y
∣∣X = x]|2+δ

∣∣X = x] ≤ M for some con-
stants δ, M > 0, uniformly over all x ∈ [0, 1]d . Then, there
exists a sequence σn(x) → 0 such that

μ̂n(x) − E[μ̂n(x)]
σn(x)

⇒ N (0, 1) , (22)

whereN (0, 1) is the standard normal distribution.

Moreover, as we show below, it is possible to accurately esti-
mate the variance of a random forest using the infinitesimal jack-
knife for random forests (Efron 2014; Wager, Hastie, and Efron
2014).

Theorem 3.5. Let V̂IJ (x; , Z1, . . . , Zn) be the infinitesimal jack-
knife for random forests as defined in (8). Then, under the con-
ditions of Theorem 3.4,

V̂IJ (x; Z1, . . . , Zn)/σ
2
n (x) →p 1. (23)
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Finally, we end this section by motivating the finite sam-
ple correction n(n − 1)/(n − s)2 appearing in (13) by consid-
ering the simple case where we have trivial trees that do not
make any splits: T (x; ξ, Zi1, . . . , Zis ) = s−1 ∑s

j=1Yij . In this
case, we can verify that the full random forest is nothing but
μ̂ = n−1 ∑n

i=1Yi, and the standard variance estimator

V̂simple = 1
n (n − 1)

n∑
i=1

(Yi − Ȳ )
2
, Ȳ = 1

n

n∑
i=1

Yi

is well-known to be unbiased for Var[μ̂]. We show below that,
for trivial trees V̂IJ = V̂simple, implying that our correctionmakes
V̂IJ exactly unbiased in finite samples for trivial trees. Of course,
n(n − 1)/(n − s)2 → 1, and so Theorem 3.5 would hold even
without this finite-sample correction; however, we find it to sub-
stantially improve the performance of our method in practice.

Proposition 5. For trivial trees T (x; ξ, Zi1 , . . . , Zis ) =
s−1 ∑s

j=1Yij , the variance estimate V̂IJ (13) is equivalent to
the standard variance estimator V̂simple, and E[V̂IJ] = var[μ̂].

4. Inferring Heterogeneous Treatment Effects

We now return to our main topic, namely estimating heteroge-
neous treatment effects using random forests in the potential
outcomes framework with unconfoundedness, and adapt our
asymptotic theory for regression forests to the setting of causal
inference. Here, we again work with training data consisting of
tuples Zi = (Xi, Yi, Wi) for i = 1, . . . , n, where Xi is a feature
vector, Yi is the response, and Wi is the treatment assignment.
Our goal is to estimate the conditional average treatment effect
τ (x) = E[Y (1) −Y (0) |X = x] at a pre-specified test point x. By
analogy to Definition 1, we build our causal forest CF by aver-
aging estimates for τ obtained by training causal trees � over
subsamples:

CF(x; Z1, . . . , Zn) =
(
n
s

)−1 ∑
1≤i1<i2<...<is≤n

Eξ∼�

×[�(x; ξ, Zi1 , · · · , Zis )]. (24)

We seek an analogue to Theorem 3.1 for such causal forests.
Most of the definitions used to state Theorem 3.1 apply

directly to this context; however, the notions of honesty and reg-
ularity need to be adapted slightly. Specifically, an honest causal
tree is not allowed to look at the responsesYi whenmaking splits
but can look at the treatment assignmentsWi. Meanwhile, a reg-
ular causal tree must have at least k examples from both treat-
ment classes in each leaf; in other words, regular causal trees
seek to act as fully grown trees for the rare treatment assign-
ment, while allowing for more instances of the common treat-
ment assignment.

Definition 2b. A causal tree grown on a training sample (Z1 =
(X1, Y1, W1), ..., Zs = (Xs, Ys, Ws)) is honest if (a) (stan-
dard case) the tree does not use the responses Y1, . . . , Ys in
choosing where to place its splits; or (b) (double sample case) the
tree does not use the I-sample responses for placing splits.

Definition 4b. A causal tree grown by recursive partitioning is α-
regular at x for some α > 0 if either: (a) (standard case) (1) each
split leaves at least a fraction α of the available training examples

on each side of the split, (2) the leaf containing x has at least k
observations from each treatment group (Wi ∈ {0, 1}) for some
k ∈ N, and (3) the leaf containing x has either less than 2k − 1
observations withWi = 0 or 2k − 1 observations withWi = 1;
or (b) (double-sample case) for a double-sample tree as defined
in Procedure 1, (a) holds for the I sample.

Given these assumptions, we show a close analogue to
Theorem 3.1, given below. The main difference relative to our
first result about regression forests is that we now rely on uncon-
foundedness and overlap to achieve consistent estimation of
τ (x). To see how these assumptions enter the proof, recall that
an honest causal tree uses the features Xi and the treatment
assignmentsWi in choosing where to place its splits, but not the
responses Yi. Writing I (1)(x) and I (0)(x) for the indices of the
treatment and control units in the leaf around x, we then find
that after the splitting stage

E[�(x)|X, W ]

=
∑

{i∈I (1)(x)} E[Y
(1)

∣∣X = Xi, W = 1]
|I (1)(x)|

−
∑

{i∈I (0) (x)} E[Y
(0)

∣∣X = Xi, W = 0]∣∣I (0)(x)
∣∣

=
∑

{i∈I (1)(x)} E[Y
(1)

∣∣X = Xi]
|I (1)(x)|

−
∑

{i∈I (0) (x)} E[Y
(0)

∣∣X = Xi]
|I (0)(x)| , (25)

where the second equality follows by unconfoundedness (2).
Thus, it suffices to show that the two above terms are consistent
for estimatingE[Y (0)

∣∣X = x] andE[Y (1)
∣∣X = x]. To do so, we

can essentially emulate the argument leading to Theorem 3.1,
provided we can establish an analogue to Lemma 3.1 and
give a fast enough decaying upper bound to the diameter of
L(x); this is where we need the overlap assumption. A proof of
Theorem 4.1 is given in the Appendix.

Theorem 4.1. Suppose that we have n independent and iden-
tically distributed training examples Zi = (Xi, Yi, Wi) ∈
[0, 1]d × R × {0, 1}. Suppose, moreover, that the treatment
assignment is unconfounded (2) and has overlap (6). Finally,
suppose that both potential outcome distributions (Xi, Y (0)

i )

and (Xi, Y (1)
i ) satisfy the same regularity assumptions as the

pair (Xi, Yi) did in the statement of Theorem 3.1. Given this
data-generating process, let � be an honest, α-regular with
α ≤ 0.2, and symmetric random-split causal forest in the sense
of Definitions 2b, 3, 4b, and 5, and let τ̂ (x) be the estimate for
τ (x) given by a causal forest with base learner � and a sub-
sample size sn scaling as in (14). Then, the predictions τ̂ (x) are
consistent and asymptotically both Gaussian and centered, and
the variance of the causal forest can be consistently estimated
using the infinitesimal jackknife for random forests, that is, (7)
holds.

Remark 4. (Testing at many points)We note that it is not in gen-
eral possible to construct causal trees that are regular in the sense
of Definition 4b for all x simultaneously. As a simple example,
consider the situationwhere d = 1, andWi = 1({Xi ≥ 0}); then,
the tree can have at most 1 leaf for which it is regular. In the
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proof of Theorem 4.1, we avoided this issue by only considering
a single test point x, as it is always possible to build a tree that is
regular at a single given point x. In practice, if we want to build
a causal tree that can be used to predict at many test points, we
may need to assign different trees to be valid for different test
points. Then, when predicting at a specific x, we treat the set of
trees that were assigned to be valid at that x as the relevant forest
and apply Theorem 4.1 to it.

5. Simulation Experiments

In observational studies, accurate estimation of heterogeneous
treatment effects requires overcoming two potential sources of
bias. First, we need to identify neighborhoods over which the
actual treatment effect τ (x) is reasonably stable and, second, we
need to make sure that we are not biased by varying sampling
propensities e(x). The simulations here aim to test the ability of
causal forests to respond to both of these factors.

Since causal forests are adaptive nearest neighbor estimators,
it is natural to use a nonadaptive nearest neighborhood method
as our baseline.We compare our method to the standard k near-
est neighbors (k-NN) matching procedure, which estimates the
treatment effect as

τ̂KNN(x) = 1
k

∑
i∈S1(x)

Yi − 1
k

∑
i∈S0(x)

Yi, (26)

where S1 and S0 are the k nearest neighbors to x in the treat-
ment (W = 1) and control (W = 0) samples respectively. We
generate confidence intervals for the k-NN method by model-
ing τ̂KNN(x) asGaussianwithmean τ (x) and variance (V̂ (S0) +
V̂ (S1))/(k (k − 1)), where V̂ (S0/1) is the sample variance for
S0/1.

The goal of this simulation study is to verify that forest-based
methods can be used build rigorous, asymptotically valid con-
fidence intervals that improve over nonadaptive methods like
k-NN in finite samples. The fact that forest-based methods hold
promise for treatment effect estimation in terms of predictive
error has already been conclusively established elsewhere; for
example, BART methods following Hill (2011) won the recent
Causal Inference Data Analysis Challenge at the 2016 Atlantic
Causal Inference Conference.We hope that the conceptual tools
developed in this article will prove to be helpful in analyzing a
wide variety of forest-based methods.

5.1. Experimental Setup

We describe our experiments in terms of the sample size n, the
ambient dimension d, as well as the following functions:

main effect:m(x) = 2−1
E[Y (0) +Y (1) |X = x],

treatment effect: τ (x) = E[Y (1) −Y (0) |X = x],
treatment propensity: e(x) = P[W = 1 |X = x].

In all our examples, we respect unconfoundedness (2),
use X ∼ U ([0, 1]d ), and have homoscedastic noise
Y (0/1) ∼ N (E[Y (0/1)

∣∣X], 1). We evaluate performance in
terms of expected mean-squared error for estimating τ (X ) at a
random test example X , as well as expected coverage of τ (X )

with a target coverage rate of 0.95.

In our first experiment, we held the treatment effect fixed
at τ (x) = 0, and tested the ability of our method to resist bias
due to an interaction between e(x) and m(x). This experiment
is intended to emulate the problem that in observational stud-
ies, a treatment assignment is often correlated with potential
outcomes, creating bias unless the statistical method accurately
adjusts for covariates. k-NNmatching is a popular approach for
performing this adjustment in practice. Here, we set

e(X ) = 1
4
(1 + β2, 4(X1)), m(X ) = 2X1 − 1, (27)

where βa, b is the β-density with shape parameters a and b. We
used n = 500 samples and varied d between 2 and 30. Since our
goal is accurate propensity matching, we use propensity trees
(Procedure 2) as our base learner; we grew B = 1000 trees with
s = 50.

For our second experiment, we evaluated the ability of causal
forests to adapt to heterogeneity in τ (x), while holdingm(x) =
0 and e(x) = 0.5 fixed. Thanks to unconfoundedness, the fact
that e(x) is constant means that we are in a randomized exper-
iment. We set τ to be a smooth function supported on the first
two features:

τ (x) = ς(X1) ς (X2), ς (x) = 1 + 1
1 + e−20(x−1/3) . (28)

We took n = 5000 samples, while varying the ambient dimen-
sion d from 2 to 8. For causal forests, we used double-sample
trees with the splitting rule of Athey and Imbens (2016) as our
base learner (Procedure 1). We used s = 2500 (i.e., |I| = 1250)
and grew B = 2000 trees.

Oneweakness of nearest neighbor approaches in general, and
random forests in particular, is that they can fill the valleys and
flatten the peaks of the true τ (x) function, especially near the
edge of feature space.We demonstrate this effect using an exam-
ple similar to the one studied above, except now τ (x) has a
sharper spike in the x1, x2 ≈ 1 region:

τ (x) = ς(X1) ς (X2), ς (x) = 2
1 + e−12(x−1/2) . (29)

We used the same training method as with (28), except with
n = 10, 000, s = 2000, and B = 10, 000.

We implemented our simulations in R, using the packages
causalTree (Athey and Imbens 2016) for building individ-
ual trees, randomForestCI (Wager, Hastie, and Efron 2014)
for computing V̂IJ , and FNN (Beygelzimer et al. 2013) for k-NN
regression. All our trees had a minimum leaf size of k = 1.
Software replicating the above simulations is available from the
authors.

5.2. Results

In our first setup (27),causal forests present a striking improve-
ment over k-NN matching; see Table 1. Causal forests succeed
in maintaining a mean-squared error of 0.02 as d grows from
2 to 30, while 10-NN and 100-NN do an order of magnitude
worse. We note that the noise of k-NN due to variance in Y
after conditioning on X and W is already 2/k, implying that
k-NN with k ≤ 100 cannot hope to match the performance of
causal forests. Here, however, 100-NN is overwhelmed by bias,
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Figure . Graphical diagnostics for causal forests in the setting of (). The first two panels evaluate the sampling error of causal forests and our infinitesimal jackknife
estimate of variance over , randomly draw test points, with d = 20. The right-most panel shows standardized Gaussian QQ-plots for predictions at the same  test
points, with n = 800 and d = 20. The first two panels are computed over  randomly drawn training sets, and the last one over  training sets.

Table . Comparison of the performance of a causal forests (CF) with that of
the k-nearest neighbors (k-NN) estimator with k = 10, 100, on the setup ().
The numbers in parentheses indicate the (rounded) standard sampling error for
the last printed digit, obtained by aggregating performance over  simulation
replications

Mean-squared error Coverage

d CF -NN -NN CF -NN -NN

 . () . () . () . () . () . ()
 . () . () . () . () . () . ()
 . () . () . () . () . () . ()
 . () . () . () . () . () . ()
 . () . () . () . () . () . ()
 . () . () . () . () . () . ()

even with d = 2. Meanwhile, in terms of uncertainty quantifi-
cation, our method achieves nominal coverage up to d = 10,
after which the performance of the confidence intervals starts to
decay. The 10-NN method also achieves decent coverage; how-
ever, its confidence intervals are much wider than ours as evi-
denced by the mean-squared error.

Figure 1 offers some graphical diagnostics for causal forests
in the setting of (27). In the left panel, we observe how the
causal forest sampling variance σ 2

n (x) goes to zero with n; while
the center panel depicts the decay of the relative root-mean
squared error of the infinitesimal jackknife estimate of vari-
ance, that is, E[(σ̂ 2

n (x) − σ 2
n (x))2]1/2/σ 2

n (x). The boxplots dis-
play aggregate results for 1,000 randomly sampled test points
x. Finally, the right-most panel evaluates the Gaussianity of the
forest predictions. Here, we first drew 1,000 random test points
x, and computed τ̂ (x) using forests grown on many different
training sets. The plot shows standardized Gaussian QQ-plots
aggregated over all these x; that is, for each x, we plot Gaus-
sian theoretical quantiles against sample quantiles of (τ̂ (x) −
E(τ̂ (x)))/

√
Var[τ̂ (x)].

In our second setup (28), causal forests present a similar
improvement over k-NN matching when d > 2, as seen in
Table 2.10 Unexpectedly, we find that the performance of causal
forests improves with d, at least when d is small. To understand
this phenomenon, we note that the variance of a forest depends
on the product of the variance of individual trees times the
correlation between different trees (Breiman 2001a; Hastie,

When d = 2, we do not expect causal forests to have a particular advantage over
k-NN since the true τ also has -dimensional support; our results mirror this, as
causal forests appear to have comparable performance to -NN.

Tibshirani, and Friedman 2009). Apparently, when d is larger,
the individual trees have more flexibility in how to place
their splits, thus reducing their correlation and decreasing the
variance of the full ensemble.

Finally, in the setting (29), Table 3 shows that causal forests
still achieve an order of magnitude improvement over k-NN in
terms of mean-squared error when d > 2, but struggle more
in terms of coverage. This appears to largely be a bias effect:
especially as d gets larger, the random forest is dominated by
bias instead of variance and so the confidence intervals are not
centered. Figure 2 illustrates this phenomenon: although the
causal forest faithfully captures the qualitative aspects of the
true τ -surface, it does not exactly match its shape, especially in
the upper-right corner where τ is largest. Our theoretical results
guarantee that this effect will go away as n → ∞. Figure 2 also
helps us understand why k-NN performs so poorly in terms of
mean-squared error: its predictive surface is both badly biased
and noticeably “grainy,” especially for d = 20. It suffers from
bias not only at the boundary where the treatment effect is the

Table . Comparison of the performance of a causal forests (CF) with that of the
k-nearest neighbors (k-NN) estimator with k = 7, 50, on the setup (). The num-
bers in parentheses indicate the (rounded) standard sampling error for the last
printed digit, obtained by aggregating performance over  simulation replications

Mean-squared error Coverage

d CF -NN -NN CF -NN -NN

 . () . () . () . () . () . ()
 . () . () . () . () . () . ()
 . () . () . () . () . () . ()
 . () . () . () . () . () . ()
 . () . () . () . () . () . ()
 . () . () . () . () . () . ()

Table . Comparison of the performance of a causal forests (CF) with that of the
k-nearest neighbors (k-NN) estimatorwith k = 10, 100, on the setup (). The num-
bers in parentheses indicate the (rounded) standard sampling error for the last
printed digit, obtained by aggregating performance over  simulation replications

Mean-squared error Coverage

d CF -NN -NN CF -NN -NN

 . () . () . () . () . () . ()
 . () . () . () . () . () . ()
 . () . () . () . () . () . ()
 . () . () . () . () . () . ()
 . () . () . () . () . () . ()
 . () . () . () . () . () . ()
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Figure . The true treatment effect τ (Xi) at , random test examples Xi , along with estimates τ̂ (Xi) produced by a causal forest and optimally-tuned k-NN, on data
drawn according to () with d = 6, 20. The test points are plotted according to their first two coordinates; the treatment effect is denoted by color, from dark (low) to
light (high). On this simulation instance, causal forests and k∗-NN had a mean-squared error of ., and . respectively, for d = 6, and of . and ., respectively, for
d = 20. The optimal tuning choices for k-NN were k∗ = 39 for d = 6, and k∗ = 24 for d = 20.

largest, but also where the slope of the treatment effect is high
in the interior.

These results highlight the promise of causal forests for accu-
rate estimation of heterogeneous treatment effects, all while
emphasizing avenues for further work. An immediate challenge
is to control the bias of causal forests to achieve better cover-
age. Using more powerful splitting rules is a good way to reduce
bias by enabling the trees to focus more closely on the coordi-
nates with the greatest signal. The study of splitting rules for
trees designed to estimate causal effects is still in its infancy and
improvements may be possible.

A limitation of the present simulation study is that we man-
ually chose whether to use double-sample forests or propensity
forests, depending on which procedure seemed more appropri-
ate in each problem setting. An important challenge for future
work is to design splitting rules that can automatically choose
which characteristic of the training data to split on. A principled
and automatic rule for choosing s would also be valuable.

We present additional simulation results in the supplemen-
tary material. Appendix A has extensive simulations in the
setting of Table 2 while varying both s and n; and also considers
a simulation setting, where the signal is spread out over many
different features, meaning that forests have less upside over
baseline methods. Finally, in Appendix B, we study the effect of
honesty versus adaptivity on forest predictive error.

6. Discussion

This article proposed a class of nonparametric methods for
heterogeneous treatment effect estimation that allow for data-
driven feature selection all while maintaining the benefits of

classical methods, that is, asymptotically normal and unbiased
point estimates with valid confidence intervals. Our causal for-
est estimator can be thought of as an adaptive nearest neighbor
method, where the data determine which dimensions are most
important to consider in selecting nearest neighbors. Such adap-
tivity seems essential for modern large-scale applications with
many features.

In general, the challenge in using adaptive methods as the
basis for valid statistical inference is that selection bias can
be difficult to quantify; see Berk et al. (2013), Chernozhukov,
Hansen, and Spindler (2015), Taylor and Tibshirani (2015),
and references therein for recent advances. In this article, pair-
ing “honest” trees with the subsampling mechanism of random
forests enabled us to accomplish this goal in a simple yet princi-
pled way. In our simulation experiments, our method provides
dramatically better mean-squared error than classical methods
while achieving nominal coverage rates in moderate sample
sizes.

A number of important extensions and refinements are left
open. Our current results only provide pointwise confidence
intervals for τ (x); extending our theory to the setting of global
functional estimation seems like a promising avenue for fur-
ther work. Another challenge is that nearest-neighbor nonpara-
metric estimators typically suffer from bias at the boundaries
of the support of the feature space. A systematic approach to
trimming at the boundaries, and possibly correcting for bias,
would improve the coverage of the confidence intervals. In gen-
eral, work can be done to identifymethods that produce accurate
variance estimates even in more challenging circumstances, for
example, with small samples or a large number of covariates, or
to identify when variance estimates are unlikely to be reliable.
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