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We propose robust methods for inference about the effect of a treatment variable on a scalar outcome
in the presence of very many regressors in a model with possibly non-Gaussian and heteroscedastic
disturbances. We allow for the number of regressors to be larger than the sample size. To make informative
inference feasible, we require the model to be approximately sparse; that is, we require that the effect of
confounding factors can be controlled for up to a small approximation error by including a relatively small
number of variables whose identities are unknown. The latter condition makes it possible to estimate the
treatment effect by selecting approximately the right set of regressors. We develop a novel estimation and
uniformly valid inference method for the treatment effect in this setting, called the “post-double-selection”
method. The main attractive feature of our method is that it allows for imperfect selection of the controls
and provides confidence intervals that are valid uniformly across a large class of models. In contrast,
standard post-model selection estimators fail to provide uniform inference even in simple cases with a
small, fixed number of controls. Thus, our method resolves the problem of uniform inference after model
selection for a large, interesting class of models. We also present a generalization of our method to a fully
heterogeneous model with a binary treatment variable. We illustrate the use of the developed methods
with numerical simulations and an application that considers the effect of abortion on crime rates.

Key words: Treatment effects, Partially linear model, High-dimensional-sparse regression, Inference under
imperfect model selection, Uniformly valid inference after model selection, Average treatment effects,
Lasso, Orthogonality of estimating equations with respect to nuisance parameters.
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1. INTRODUCTION

Many empirical analyses focus on estimating the structural, causal, or treatment effect of some
variable on an outcome of interest. For example, we might be interested in estimating the causal

†This is a revision of a 2011 ArXiv/CEMMAP paper entitled “Estimation of Treatment Effects with High-
Dimensional Controls”.
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effect of some government policy on an economic outcome such as employment. Since economic
policies and many other economic variables are not randomly assigned, economists rely on a
variety of quasi-experimental approaches based on observational data when trying to estimate
such effects. One important method is based on the assumption that the variable of interest can be
taken as randomly assigned after controlling for a sufficient set of other factors; see, for example,
Heckman et al. (1999) and Imbens (2004).

A problem empirical researchers face when relying on a conditional-on-observables
identification strategy for estimating a structural effect is knowing which controls to include.
Typically, economic intuition will suggest a set of variables that might be important but will
not identify exactly which variables are important or the functional form with which variables
should enter the model. This lack of clear guidance about what variables to use leaves researchers
with the problem of selecting a set of controls from a potentially vast set of variables including
raw regressors available in the data as well as interactions and other transformations of these
regressors. A typical economic study will rely on an ad hoc sensitivity analysis in which a
researcher reports results for several different sets of controls in an attempt to show that the
parameter of interest that summarizes the causal effect of the policy variable is insensitive to
changes in the set of control variables. See Donohue III and Levitt (2001), which we use as the
basis for the empirical study in this article, or examples in Angrist and Pischke (2008) among
many other references.

We present an approach to estimating and performing inference on structural effects in an
environment where the treatment variable may be taken as exogenous conditional on observables
that complements existing strategies. We pose the problem in the framework of a partially linear
model

yi=diα0+g(zi)+ζi (1.1)

where di is the treatment/policy variable of interest, zi is a set of control variables, and ζi is an
unobservable that satisfies E[ζi |di,zi]=0.1 The goal of the econometric analysis is to conduct
inference on the treatment effect α0. We examine the problem of selecting a set of variables
from among p potential regressors xi=P(zi), which may consist of zi and transformations of
zi, to adequately approximate g(zi) allowing for p>n. Of course, useful inference about α0 is
unavailable in this framework without imposing further structure. We impose such structure by
assuming that exogeneity of di may be taken as given once one controls linearly for a relatively
small number s<n of variables in xi whose identities are a priori unknown. This assumption
implies that linear combinations of these s unknown regressors provide approximations to g(zi)
and to E[di|zi]=m(zi) which produce relatively small approximation errors for each object. This
assumption, which is termed approximate sparsity or simply sparsity, allows us to approach the
problem of estimating α0 as a variable selection problem. This framework includes as special
cases the most common approaches to parametric and nonparametric regression analysis and
allows for the realistic scenario in which the researcher is unsure about exactly which variables
or transformations are important confounds and so must search among a broad set of controls.2

1. We note that di does not need to be binary. This structure may also arise in the context of randomized treatment
in the case where treatment assignment depends on underlying control variables, potentially in a complicated way. See,
for example, Duflo et al. (2008), especially Section 6.1, and Kremer and Glennerster (2011).

2. High-dimensional xi typically occurs in either of two ways. First, the baseline set of conditioning variables
itself may be large so xi=zi, and we assume g(zi)=g(xi)≈x′iβg. Second, zi may be low-dimensional, but one may wish
to entertain many non-linear transformations of zi in forming xi=P(zi) as in traditional series-based estimation of the
partially linear model. In the second case, one might prefer to refer to zi as the controls and xi as something else, such
as technical regressors. For simplicity of exposition and as the formal development in the article is agnostic about the
source of high-dimensional xi, we call the variables in xi controls or control variables in either case.
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The main contributions of this article are providing an estimation and inference method
within a partially linear model with potentially very high-dimensional controls and developing
the supporting theory establishing its validity uniformly across a rich class of data-generating
processes (dgps). Our approach differs from usual post-model-selection methods that rely on a
single selection step. Rather, we use two different variable selection steps followed by a final
estimation step as follows:

1. In the first step, we select a set of control variables that are useful for predicting the
treatment di. This step helps to insure validity of post-model-selection-inference by finding
control variables that are strongly related to the treatment and thus potentially important
confounding factors.

2. In the second step, we select additional variables by selecting control variables that predict
yi. This step helps to insure that we have captured important elements in the equation of
interest, ideally helping keep the residual variance small, as well as providing an additional
chance to find important confounds.

3. In the final step, we estimate the treatment effect α0 of interest by the linear regression
of yi on the treatment di and the union of the set of variables selected in the two variable
selection steps.

We provide theoretical results on the properties of the resulting treatment effect estimator
and show that it provides inference that is uniformly valid over large classes of models and also
achieves the semi-parametric efficiency bound under some conditions. Importantly, our theoretical
results allow for imperfect variable selection in either of the two variable selection steps as well
as allowing for non-Gaussianity and heteroscedasticity of the model’s errors.

We illustrate the theoretical results through an examination of the effect of abortion on
crime rates following Donohue III and Levitt (2001). In this example, we find that the formal
variable selection procedure produces a qualitatively different result than that obtained through the
ad hoc set of sensitivity results presented in the original paper. By using formal variable selection,
we select a small set of between eight and twelve variables depending on the outcome, compared to
the set of eight variables considered by Donohue III and Levitt (2001). Once this set of variables
is linearly controlled for, the estimated abortion effect is rendered imprecise. The selected
variables differ substantially from the eight variables used in Donohue III and Levitt (2001)
and are generally related to non-linear trends that depend on initial state-level characteristics.
It is interesting that Foote and Goetz (2008) raise a similar point based on intuitive grounds and
additional data in a comment on Donohue III and Levitt (2001). Foote and Goetz (2008) find
that a linear trend interacted with crime rates computed before abortion could have had an effect
renders the estimated abortion effects imprecise.3 Overall, finding that a formal, rigorous approach
to variable selection produces a qualitatively different result than a more ad hoc approach suggests
that these methods might be used to complement economic intuition in selecting control variables
for estimating treatment effects in settings where treatment is taken as exogenous conditional on
observables.

3. Donohue III and Levitt (2008) provide yet more data and a more flexible specification in response to
Foote and Goetz (2008). In a supplement available at http://faculty.chicagobooth.edu/christian.hansen/research/, we
provide additional results based on Donohue III and Levitt (2008). The conclusions are similar to those obtained in
this article in that we find the estimated abortion effect becomes imprecise once one allows for a broad set of controls
and selects among them. However, the specification of Donohue III and Levitt (2008) relies on a large number of district
cross time fixed effects and so does not immediately fit into our regularity conditions. We conjecture the methodology
continues to work in this case but leave verification to future research.
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Relationship to literature. We contribute to several existing literatures. First, we contribute
to the literature on semi-parametric estimation of partially linear models; see Donald and Newey
(1994), Härdle et al. (2000), Robinson (1988), and others.4 We differ from most of the existing
literature that considers p�n series terms by allowing p�n series terms from which we select
ŝ�n terms to construct the regression fits. Considering an initial broad set of terms allows for
more refined approximations of regression functions relative to the usual approach that uses only
a few low-order terms. See, for example, Belloni et al. (2011) for a wage function example and
Section 4 for theoretical examples. However, our most important contribution is to allow for
data-dependent selection of the appropriate series terms. The previous literature on inference in
the partially linear model generally takes the series terms as given without allowing for their
data-driven selection. However, selection of series terms is crucial for achieving consistency
when p�n and is needed for increasing efficiency even when p=Cn with C<1.5

Second, we contribute to the literature on the estimation of treatment effects. We note that the
policy variable di does not have to be binary in our framework. However, our method has a useful
interpretation related to the propensity score when di is binary. In the first selection step, we select
terms from xi that predict the treatment di, i.e. terms that explain the propensity score. We also
select terms from xi that predict yi, i.e. terms that explain the outcome regression function. Then we
run a final regression of yi on the treatment di and the union of selected terms. Thus, our procedure
relies on the selection of variables relevant for both the propensity score and the outcome
regression and is related to treatment effects estimators that use regression adjustment after
conditioning on the propensity score. Relying on selecting variables that are important for both
objects allows us to achieve two goals: we obtain uniformly valid confidence sets for α0 despite
imperfect model selection, and we achieve full efficiency for estimating α0 in the homoscedastic
case. The relation of our approach to the propensity score brings about interesting connections
to the treatment effects literature. Hahn (1998), Heckman et al. (1998), and Abadie and Imbens
(2011) have constructed efficient regression or matching-based estimates of average treatment
effects. Hahn (1998) also shows that conditioning on the propensity score is unnecessary for
efficient estimation of average treatment effects. Hirano et al. (2003) demonstrate that one can
efficiently estimate average treatment effects using estimated propensity score weighting alone.
Robins and Rotnitzky (1995) have shown that using propensity score modeling coupled with a
parametric regression model leads to efficient estimates if either the propensity score model or
the parametric regression model is correct. While our contribution is quite distinct from these
approaches, it also highlights the important robustness role played by the propensity score model
in the selection of the right control terms for the final regression.

Third, we contribute to the literature on estimation and inference with high-dimensional data
and to the uniformity literature. There has been extensive work on estimation and perfect model
selection in both low and high-dimensional contexts; see, e.g. Hansen (2005) and Belloni et al.
(2010) for reviews focused on econometric applications. However, there has been little work on
inference after imperfect model selection. Perfect model selection relies on extremely unrealistic
assumptions, and even moderate model selection mistakes can have serious consequences for
inference as has been shown in Pötscher (2009), Leeb and Pötscher (2008a), and others. In work on

4. Following Robinson (1988)’s method, estimation of the parameters of the linear part of a partially linear model
is typically done by regressing yi−Ê[yi|zi] on di−Ê[di|zi] where Ê[yi|zi] and Ê[di|zi] are preliminary non-parametric
estimators of the conditional expectations of yi and di given zi under the assumption that dim(zi) is small. Our approach
implicitly fits within this framework where we are offering selection based estimators of the conditional expectation
functions.

5. Cattaneo et al. (2010) derive properties of series estimator under p=Cn, C<1, asymptotics. It follows from
their results that, under homoscedasticity, the series estimator achieves the semiparametric efficiency bound only if C→0.
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instrument selection for estimation of a linear instrumental variables model, Belloni et al. (2010)
and Belloni et al. (2012) have shown that moderate model selection mistakes do not prevent
valid inference about low-dimensional structural parameters by exploiting the orthogonality
or “immunization” property of the problem, whereby the moment equation identifying the
target parameter is not affected by small perturbations of the nuisance function, the optimal
instrument in the IV context.6 The partially linear regression model (1.1) does not immediately
have the same orthogonality structure, and model selection based on the outcome regression alone
produces confidence intervals with poor coverage properties. However, our post-double selection
procedure, which also selects controls that explain E[di|zi], creates the necessary orthogonality by
performing two separate model selection steps. Performing the two selection steps helps reduce
omitted variable bias so that it is possible to perform uniform inference after model selection.7 In
that regard, our contribution is in the spirit of and builds upon the classical contribution by Romano
(2004) on the uniform validity of t-tests for the univariate mean. It also shares the spirit of recent
contributions, among others, by Mikusheva (2007) on uniform inference in autoregressive models,
by Andrews and Cheng (2011) on uniform inference in moment condition models that are poten-
tially unidentified, and by Andrews et al. (2011) on a generic framework for uniformity analysis.

Finally, we contribute to the broader literature on high-dimensional estimation. For variable
selection, we use �1-penalized methods, though our method and theory will allow for the use of
other methods. �1-penalized methods have been proposed for model selection problems in high-
dimensional least squares problems, e.g. Lasso in Frank and Friedman (1993) and Tibshirani
(1996), in part because they are computationally efficient. Many �1-penalized methods and related
methods have been shown to have good estimation properties even when perfect variable selection
is not feasible; see, e.g.Candès and Tao (2007), Meinshausen and Yu (2009), Bickel et al. (2009),
Huang et al. (2010), Belloni and Chernozhukov (2013) and the references therein. Such methods
have also been shown to extend to non-parametric and non-Gaussian cases as in Bickel et al.
(2009) and Belloni et al. (2012). These methods produce models with a relatively small set of
variables. The last property is important in that it leaves the researcher with a set of variables
that may be examined further; in addition, it corresponds to the usual approach in economics that
relies on considering a small number of controls.

Notation. We work with triangular array data {ωi,n}ni=1, which is an observable set of the
first n elements of the infinite data stream {ωi,n}∞i=1 defined on the infinite product probability
space (�,A,Pn), where P=Pn the probability measure or data-generating process for the entire
infinite stream can change with n. We shall use Pn (possibly dependent on n) as the sets of
potential probability measures P that satisfy certain assumptions. Each ωi,n= (y′i,n,z′i,n,d′i,n)′ is a
vector with components defined below, and these vectors are i.n.i.d.—independent across i, but
not necessarily identically distributed. Thus, all parameters that characterize the distribution of
{ωi,n}∞i=1 are implicitly indexed by Pn and thus by the sample size n. We shall omit the dependence
on n and on Pn from the notation where possible. We use such array asymptotics as doing so allows
consideration of approximating sequences that better capture some finite-sample phenomena and
to insure the robustness of conclusions with respect to perturbations of the data-generating process
P along various sequences. This robustness, in turn, translates into uniform validity of confidence
regions over certain regions P=∩n�n0P of data-generating processes, where n0�1 is a fixed
sample size.

6. To the best of our knowledge, Belloni et al. (2010) and Belloni et al. (2012) were the first to use this
immunization/orthoganility property in the p�n setup. We provide a further discussion on this property in Section 5.

7. Note that this claim only applies to the main parameterα0 and does not apply to the nuisance part g. Furthermore,
our claim of uniformity only applies to models in which both g and m are approximately sparse. See the remarks following
Theorem 1 for further discussion.
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We use the following empirical process notation, En[f ] :=En[f (ωi)] :=∑n
i=1 f (ωi)/n, and

Gn(f ) :=∑n
i=1(f (ωi)−E[f (ωi)])/√n. Since we want to deal with i.n.i.d. data, we also introduce

the average expectation operator : Ē[f ] :=EEn[f ]=EEn[f (ωi)]=∑n
i=1E[f (ωi)]/n. The l2-norm

is denoted by ‖·‖, and the l0-norm, denoted ‖·‖0, is the number of non-zero components of a
vector. We use ‖·‖∞ to denote the maximal element of a vector. Given a vector δ∈R

p, and a set
of indices T⊂{1,...,p}, we denote by δT ∈R

p the vector in which δTj=δj if j∈T and δTj=0 if
j /∈T . We use the notation (a)+=max{a,0}, a∨b=max{a,b}, and a∧b=min{a,b}. We also use
the notation a�b to denote a�cb for some constant c>0 that does not depend on n; and a�P b
to denote a=OP(b). For an event E, we say that E wp → 1 when E occurs with probability
approaching one as n grows. We also use � to denote convergence in distribution. Given a
p-vector b, we denote support(b)={j∈{1,...,p} :bj �=0}.

2. INFERENCE ON TREATMENT AND STRUCTURAL EFFECTS CONDITIONAL
ON OBSERVABLES

2.1. Framework

We consider the partially linear model

yi=diα0+g(zi)+ζi, E[ζi |zi,di]=0, (2.2)

di=m(zi)+vi, E[vi |zi]=0, (2.3)

where yi is the outcome variable, di is the policy/treatment variable whose impact α0 we would
like to infer,8 zi represents confounding factors on which we need to condition, and ζi and vi are
disturbances.

The confounding factors zi affect the policy variable via the function m(zi) and the outcome
variable via the function g(zi). Both of these functions are unknown and potentially complicated.
We use linear combinations of control terms xi=P(zi) to approximate g(zi) and m(zi), writing
(2.2) and (2.3) as

yi=diα0+x′iβg0+rgi︸ ︷︷ ︸
g(zi)

+ζi, (2.4)

di=x′iβm0+rmi︸ ︷︷ ︸
m(zi)

+vi, (2.5)

where x′iβg0 and x′iβm0 are approximations to g(zi) and m(zi), and rgi and rmi are the corresponding
approximation errors. In order to allow for a flexible specification and incorporation of pertinent
confounding factors, the vector of controls, xi=P(zi), can have dimension p=pn which can be
large relative to the sample size. Specifically, our results require logp=o(n1/3) along with other
technical conditions. High-dimensional regressors xi=P(zi) could arise for different reasons.
For instance, the list of available controls could be large, i.e. xi=zi as in e.g. Koenker (1988). It
could also be that many technical controls are present; i.e. the list xi=P(zi) could be composed
of a large number of transformations of elementary regressors zi such as B-splines, dummies,
polynomials, and various interactions as in Newey (1997), Chen (2007), or Chen and Pouzo
(2009; 2012).

8. We consider the case where di is a scalar for simplicity. Extension to the case where di is a vector of fixed, finite
dimension is accomplished by introducing an equation like (2.3) for each element of the vector.
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Having very many controls creates a challenge for estimation and inference. A key condition
that makes it possible to perform constructive estimation and inference in such cases is termed
sparsity. Sparsity is the condition that there exist approximations x′iβg0 and x′iβm0 to g(zi) and
m(zi) in (2.4)–(2.5) that require only a small number of non-zero coefficients to render the
approximation errors rgi and rmi small relative to estimation error. More formally, sparsity relies
on two conditions. First, there exist βg0 and βm0 such that at most s=sn�n elements of βm0 and
βg0 are non-zero so that

‖βm0‖0�s and ‖βg0‖0�s.

Second, the sparsity condition requires the size of the resulting approximation errors to be small
compared to the conjectured size of the estimation error:

{Ē[r2
gi]}1/2�

√
s/n and {Ē[r2

mi]}1/2�
√

s/n.

Note that the size of the approximating model s=sn can grow with n just as in standard series
estimation.

The high-dimensional-sparse-model framework outlined above extends the standard frame-
work in the treatment effect literature which assumes both that the identities of the relevant
controls are known and that the number of such controls s is much smaller than the sample size.
Instead, we assume that there are many, p, potential controls of which at most s controls suffice to
achieve a desirable approximation to the unknown functions g(·) and m(·) and allow the identity
of these controls to be unknown. Relying on this assumed sparsity, we use selection methods to
select approximately the right set of controls and then estimate the treatment effect α0.

2.2. The method: least squares after double selection

To define the method, we first write the reduced form corresponding to (2.2)–(2.3) as

yi=x′iβ̄0+ r̄i+ ζ̄i, (2.6)

di=x′iβm0+rmi+vi, (2.7)

where β̄0 :=α0βm0+βg0, r̄i :=α0rmi+rgi, ζ̄i :=α0vi+ζi.We have two equations and hence can
apply model selection methods to each equation to select control terms. Given the set of selected
controls from (2.6) and (2.7), we can estimate α0 by a least squares regression of yi on di and
the union of the selected controls. Inference on α0 may then be performed using conventional
methods for inference about parameters estimated by least squares.

The most important feature of this method is that it does not rely on the highly unrealistic
assumption of perfect model selection which is often invoked to justify inference after model
selection. Intuitively, this procedure works well since we are more likely to recover key controls
by considering selection of controls from both equations instead of just considering selection
of controls from the single equation (2.4) or (2.6). In finite-sample experiments, single-selection
methods essentially fail, providing poor inference relative to the double-selection method outlined
above. This performance is also supported theoretically by the fact that the double-selection
method requires weaker regularity conditions for its validity and for attaining the semi-parametric
efficiency bound9 than the single selection method.

9. The semi-parametric efficiency bound of Robinson (1988) is attained in the homoscedastic case whenever such
a bound formally applies.
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Now we formally define the post-double-selection estimator: Let Î1 denote the control terms
selected by a variable selector computed using data (ỹi,x̃i)= (di,xi), i=1,...,n, and let Î2 denote
the control terms selected by a variable selector computed using data (ỹi,x̃i)= (yi,xi), i=1,...,n.
The post-double-selection estimator α̌ of α0 is defined as the least squares estimator obtained by
regressing yi on di and the selected control terms xij with j∈ Î⊇ Î1∪ Î2:

(α̌,β̌)= argmin
α∈R,β∈Rp

{En[(yi−diα−x′iβ)2] : βj=0,∀j �∈ Î}. (2.8)

The set Î may contain variables that were not selected in the variable selection steps with indices
in a set, say Î3, that the analyst thinks are important for ensuring robustness. We call Î3 the
amelioration set. Thus,

Î= Î1∪ Î2∪ Î3; (2.9)

let ŝ=‖̂I‖0 and ŝj=‖̂Ij‖0 for j=1,2,3. We define a feasible Lasso estimator below and focus
on the use of feasible Lasso for variable selection in the majority of results in this article. When
feasible Lasso is used to construct Î1 and Î2, we refer to the post-double-selection estimator as the
post-double-Lasso estimator. When other model selection devices are used to construct Î1 and Î2,
we refer to the estimator as the generic post-double-selection estimator.

The main theoretical result of the article shows that the post-double-selection estimator α̌
obeys

([Ēv2
i ]−1Ē[v2

i ζ
2
i ][Ēv2

i ]−1)−1/2√n(α̌−α0)�N(0,1) (2.10)

under approximate sparsity conditions, uniformly within a rich set of data-generating processes.
We also show that the standard plug-in estimator for standard errors is consistent in these
settings. Figure 1 (right panel) illustrates the result (2.10) by showing that the finite-sample
distribution of our post-double-Lasso estimator is very close to the normal distribution. In contrast,
Figure 1 (left panel) illustrates the problem with the traditional post-single-selection estimator
based on (2.4), showing that its distribution is bimodal and sharply deviates from the normal
distribution.

2.3. Selection of controls via feasible Lasso methods

Here we describe feasible variable selection via Lasso. Note that each of the regression equations
above is of the form

ỹi= x̃′iβ0+ri︸ ︷︷ ︸
f (z̃i)

+εi,

where f (z̃i) is the regression function, x̃′iβ0 is the approximation based on the dictionary x̃i=P(z̃i),
ri is the approximation error, and εi is the error. We use the version of the Lasso estimator from
Belloni et al. (2012) geared for heteroscedastic, non-Gaussian cases, which solves

min
β∈Rp

En[(ỹi− x̃′iβ)2]+ λ
n
‖�̂β‖1, (2.11)

where �̂=diag(̂l1,...,̂lp) is a diagonal matrix of penalty loadings and ‖�̂β‖1=∑p
j=1 |̂ljβj|. The

penalty level λ and loadings l̂j’s are set as

λ=2·c√n�−1(1−γ /2p) and l̂j= lj+oP(1), lj=
√

En[x̃2
ijε

2
i ], uniformly in j=1,...,p,

(2.12)

 at M
ichigan State U

niversity on February 10, 2015
http://restud.oxfordjournals.org/

D
ow

nloaded from
 

http://restud.oxfordjournals.org/


[11:59 18/4/2014 rdt044.tex] RESTUD: The Review of Economic Studies Page: 616 608–650

616 REVIEW OF ECONOMIC STUDIES

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
0

post-single-selection estimator

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
0

post-double-selection estimator

Distributions of Studentized Estimators

Figure 1

The finite-sample distributions (densities) of the standard post-single selection estimator (left panel) and of our

proposed post-double selection estimator (right panel). The distributions are given for centered and studentized

quantities. The results are based on 10000 replications of Design 1 described in Section 4.2, with R2’s in

equation (2.6) and (2.7) set to 0.5.

where c>1 and 1−γ is a confidence level.10 The lj’s are ideal penalty loadings that are not
observed, and we estimate lj by l̂j obtained via an iteration method given in Appendix A. The
validity of using these estimates was established in Belloni et al. (2012) Lemma 11.11

A feature of the Lasso estimator is that the non-differentiability of the penalty function at zero
induces the solution β̂ to have components set exactly to zero, and thus the Lasso solution may
be used for model selection. In this article, we use β̂ as a model selection device. Specifically,
we only make use of

T̂=support(β̂),

the labels of the regressors with non-zero estimated coefficients. We show that the selected model
T̂ has good approximation properties for the regression function f under approximate sparsity
in Section 3.12 In what follows, we use the term feasible Lasso to refer to a Lasso estimator β̂
solving (2.11)–(2.12) with c>1 and 1−γ set such that

γ =o(1) and log(1/γ )� log(p∨n). (2.13)

10. Practical recommendations include the choice c=1.1 and γ close to zero, for example γ = (1/n)∧ .05.
11. Other methods that provably can be used in the heteroscedastic, non-Gaussian cases in the present context are

the square-root-Lasso estimator (Belloni et al., 2011) and self-tuned Dantzig estimator (Gautier and Tsybakov, 2011).
12. In estimating the lj’s and in Section 5, we also make use of the post-Lasso or Gauss-Lasso estimator as

in Belloni and Chernozhukov (2013) which is obtained by running conventional least squares of the outcome on
just the variables that were estimated to have non-zero coefficients by Lasso and using zero for the rest of the
coefficients.
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2.4. Intuition for the importance of double selection

To build intuition, we discuss the issues surrounding post-model selection inference in the case
where there is only one control. In this simple example, we illustrate that a key defect of single-
selection methods is that they fail to control omitted variables bias, and we demonstrate how
double-selection helps overcome this problem. With one control, the model is

yi=α0di+βgxi+ζi, (2.14)

di=βmxi+vi. (2.15)

For simplicity, all errors and controls are taken as normal,(
ζi
vi

)
|xi∼N

(
0,

(
σ 2
ζ 0

0 σ 2
v

))
, xi∼N(0,1), (2.16)

where the variance of xi is normalized to be 1. The underlying probability space is equipped with
probability measure P. Let P denote the collection of all dgps P where (2.14)–(2.16) hold with
non-singular covariance matrices in (2.16). Suppose that we have an i.i.d. sample {(yi,di,xi)}ni=1
obeying the dgp Pn∈P. The subscript n signifies that the dgp and all true parameter values
may change with n to better model finite-sample phenomena such as coefficients being “close
to zero”. As in the rest of the article, we keep the dependence of the true parameter values on
n implicit. Under the stated assumption, xi and di are jointly normal with variances σ 2

x =1 and
σ 2

d =β2
mσ

2
x +σ 2

v and correlation ρ=βmσx/σd .
The standard post-single-selection method for inference proceeds by applying a model

selection method to equation (2.14) only, followed by applying OLS to the selected model.
In the model selection stage, standard selection methods would omit xi wp→1 if

|βg|� �n√
n

cn, cn := σζ

σx
√

1−ρ2
, for some �n→∞, (2.17)

where �n is a slowly varying sequence depending only on P. On the other hand, these methods
would include xi wp→1 if

|βg|� �′n√
n

cn, for some �′n>�n, (2.18)

where �′n is another slowly varying sequence in n depending only on P. As an example, one could
do model selection in the p=1 case with a conservative t-test which drops xi if the t-statistic
|t|=|β̂g|/s.e.(β̂g)��−1(1−γ /2) where γ =1/n, β̂g is the OLS estimator, and s.e.(β̂g) is the
conventional OLS standard error estimator.13 With this choice of γ , we have �−1(1−γ /2)=√

2logn(1+o(1)), and we could then take �n=
√

logn and �′n=2
√

logn. Note that Lasso selectors
which we employ in our formal analysis act much like conservative t-tests with critical value√

2logn(1+o(1)) in low-dimensional settings, so our discussion here applies if Lasso selection
is used in place of the conservative t-test.

The behaviour of the resulting post-single-selection estimator, α̂ is then heavily influenced
by the sequence of underlying dgps. Under sequences of models Pn such that (2.18) holds xi is

13. Such a t-test is conservative in the sense that the false rejection probability is tending to zero.
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included wp→1. The post-single-selection estimator is then the OLS estimator including both
di and xi and follows standard large sample asymptotics under Pn:

σ−1
n
√

n(̂α−α0)=σ−1
n En[v2

i ]−1√nEn[viζi]︸ ︷︷ ︸
=:i

+oP(1)�N(0,1)

where σ 2
n =σ 2

ζ (σ 2
v )−1 is the semi-parametric efficiency bound for estimating α0 under

homoscedasticity. When βg=o(1/
√

n) and ρ is bounded away from 1, xi is excluded wp→1.
In this case, βg is small enough that failing to control for xi does not introduce large omitted
variables bias, and the estimator satisfies

σ ∗−1
n
√

n(̂α−α0)=σ ∗−1
n En[d2

i ]−1√nEn[diζi]︸ ︷︷ ︸
:=i∗

+oP(1)�N(0,1)

where σ ∗2n =σ 2
ζ (σ 2

d )−1≤σ 2
n . That is, the post-single-selection estimator may achieve a variance

smaller than the semi-parametric efficiency bound under such coefficient sequences. The potential
reduction in variance is often used to motivate single-selection procedures.

This “too good” behaviour of the single-selection procedure has its price, as emphasized
in Leeb and Pötscher (2008b): There are plausible sequences of dgps Pn where the post-single-
selection estimator α̂ performs very poorly. For example, consider βg= �n√

n
cn, so the coefficient

on the control is “moderately close to zero”. In this case, the t-test set-up above cannot distinguish
this coefficient from 0, and the control xi is dropped wp→1. It follows that14

|σ ∗−1
n
√

n(̂α−α0)|�∞. (2.19)

This poor behaviour occurs because the omitted variable bias created by dropping xi scaled by√
n diverges to infinity, namely |σ ∗−1

n En[d2
i ]−1√nEn[dixi]βg|∝�n→∞. That is, the standard

post-selection estimator is not asymptotically normal and even fails to be consistent at the rate of√
n under this sequence and many other sequences with small but non-zero βg.Asimilar argument

can be used to show a similar failure of single-selection based solely on (2.15).
The post-double-selection estimator, α̌ resolves this problem by doing variable selection via

standard t-tests or Lasso-type selectors with two equations that contain the information from
(2.14) and (2.15) and then estimating α0 by regressing yi on di and the union of the selected
controls. By doing so, xi is omitted only if its coefficient in both equations is small which greatly
limits the potential for omitted variables bias. Formally, we drop xi with positive probability
only if

both |βg|< �′n√
n

cn and |βm|< �′n√
n

(σv/σx). (2.20)

Given this property, it follows that the post-double selection estimator satisfies

σ−1
n
√

n(α̌−α0)= i+oP(1)�N(0,1), (2.21)

under any sequence of Pn∈P implying we get the same approximating distribution whether or
not xi is omitted. That α̌ follows (2.21) when xi is included is obvious as in the single-selection

14. Indeed, note that σ ∗−1
n
√

n(̂α−α0)=σ ∗−1
n En[d2

i ]−1√nEn[diζi]+σ ∗−1
n En[d2

i ]−1√nEn[dixi]βg := i∗+ii∗. The
term i∗ has standard behaviour; namely i∗�N(0,1). The term ii∗ generates omitted variable bias, and it may be arbitrarily
large since, wp→1, |ii∗|� 1

2
|ρ|√
1−ρ2

�n↗∞, if �n|ρ|↗∞.
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case. When xi is dropped, we have

σ ∗−1
n
√

n(α̌−α0)=σ ∗−1
n En[d2

i ]−1√nEn[diζi]︸ ︷︷ ︸
=i∗

+σ ∗−1
n En[d2

i ]−1√nEn[dixi]βg︸ ︷︷ ︸
=ii

.

Term ii arises due to omitted variables bias and leads to the divergent behaviour of the single-
selection estimator. However, for the double-selection-estimator, we know that (2.20) holds when
xi is omitted; so we have wp→1

|ii|�2σ−1
ζ σdσ

−2
d

√
nσ 2

x |βmβg|�2
σv/σd√
1−ρ2

�′n
2

√
n
=2

(�′n)2
√

n
→0.

for sensible �′n such as �′n∝
√

logn as above. Moreover, we can show i∗−i=oP(1) under such
sequences, so the first-order asymptotics of α̌ is the same whether xi is included or excluded.

To summarize, the post-single-selection estimator may not be root-n consistent in sensible
models which translates into bad finite-sample properties. The potential poor finite-sample
performance may be clearly seen in Monte-Carlo experiments. The estimator α̂ is thus non-
regular: its first-order asymptotic properties depend on the model sequence Pn in a strong way.
In contrast, the post-double selection estimator α̌ guards against omitted variables bias which
reduces the dependence of the first-order behaviour on Pn. This good behaviour under sequences
Pn translates into uniform with respect to P∈P asymptotic normality.

We should note that the post-double-selection estimator is first-order equivalent to the
regression including all the controls when p is small relative to n.15 This equivalence disappears
under approximating sequences with number of controls proportional to the sample size, p∝n,
or greater than the sample size, p�n. It is these scenarios that motivate the use of selection as a
means of regularization. In these more complicated settings the intuition from this simple p=1
example carries through, and the post-single selection method has a highly non-regular behaviour
while the post-double selection method continues to be regular.

3. THEORY OF ESTIMATION AND INFERENCE

3.1. Regularity conditions

In this section, we provide regularity conditions that are sufficient for validity of the main
estimation and inference result. We begin by stating our main condition, which contains the
previously defined approximate sparsity assumption as well as other more technical assumptions.
Throughout the article, we let c, C, and q be absolute constants, and let �n↗∞,δn↘0, and
�n↘0 be sequences of absolute positive constants. By absolute constants, we mean constants
that are given and do not depend on the dgp P=Pn.

We assume that for each n the following condition holds on dgp P=Pn.

Condition ASTE (P): Approximate Sparse Treatment Effects. (i) We observe ωi=
(yi,di,zi), i=1,...,n, where {ωi}∞i=1 are i.n.i.d. vectors on the probability space (�,F,P) that obey
the model (2.2)–(2.3), and the vector xi=P(zi) is a p-dimensional dictionary of transformations
of zi, which may depend on n but not on P. (ii) The true parameter value α0, which may depend

15. This equivalence may be a reason double-selection was previously overlooked, though there are higher-order
differences between the estimator using all controls and our estimator in the case where p is small relative to n.
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on P, is bounded, |α0|�C. (iii) Functions m and g admit an approximately sparse form. Namely
there exists s�1 and βm0 and βg0, which depend on n and P, such that

m(zi)=x′iβm0+rmi, ‖βm0‖0�s, {Ē[r2
mi]}1/2�C

√
s/n, (3.22)

g(zi)=x′iβg0+rgi, ‖βg0‖0�s, {Ē[r2
gi]}1/2�C

√
s/n. (3.23)

(iv) The sparsity index obeys s2 log2(p∨n)/n�δn and the size of the amelioration set obeys
ŝ3�C(1∨ ŝ1∨ ŝ2). (v) For ṽi=vi+rmi and ζ̃i=ζi+rgi we have |Ē[ṽ2

i ζ̃
2
i ]−Ē[v2

i ζ
2
i ]|�δn, and

Ē[|ṽi|q+|ζ̃i|q]�C for some q>4. Moreover, maxi�n‖xi‖2∞sn−1/2+2/q�δn wp 1−�n.

Comment 3.1. The approximate sparsity (iii) and rate condition (iv) are the main conditions
for establishing the key inferential result. We present a number of primitive examples to show
that these conditions contain standard models used in empirical research as well as more flexible
models. Condition (iv) requires that the size ŝ3 of the amelioration set Î3 not be substantially
larger than the size of the set of variables selected by the Lasso method. Simply put, if we decide
to include controls in addition to those selected by Lasso, the total number of additions should
not dominate the number of controls selected by Lasso. This and other conditions will ensure that
the total number ŝ of controls obeys ŝ�P s. We also require that s2 log2(p∨n)/n→0. Note that
s is the bound on the number of regressors used by a sparse model to achieve an approximation
error of order

√
s/n and that the rate of convergence for the estimated coefficients would be√

s/n if we knew the identities of these s variables. Thus, the estimated function converges to
the population function at a rate of

√
s/n in the idealized setting where we know the identities

of the relevant variables, and we would achieve an approximation rate of o(n−1/4) under the
condition that s2/n→0 in this case. When the identities of the relevant variables are unknown,
we use the stronger rate condition s2 log2(p∨n)/n→0 where the additional logarithmic term is
the cost of not knowing the correct set of variables. This decrease in the rate of convergence can
be substantial for large p, for example if logp∝nγ for some positive γ <1/2. This condition
can be relaxed using sample-splitting, which is done in a Supplementary Appendix. Condition
(v) is simply a set of sufficient conditions for consistent estimation of the variance of the double
selection estimator. If the regressors are uniformly bounded and the approximation errors are
going to zero a.s., it is implied by other conditions stated below; and it can also be demonstrated
under other sorts of more primitive conditions. ‖

The next condition concerns the behaviour of the Gram matrix En[xix′i]. Whenever p>n, the
empirical Gram matrix En[xix′i] does not have full rank and in principle is not well-behaved.
However, we only need good behaviour of smaller submatrices. Define the minimal and maximal
m-sparse eigenvalue of a semi-definite matrix M as

φmin(m)[M] := min
1�‖δ‖0�m

δ′Mδ
‖δ‖2 and φmax(m)[M] := max

1�‖δ‖0�m

δ′Mδ
‖δ‖2 . (3.24)

To assume that φmin(m)[En[xix′i]]>0 requires that all empirical Gram submatrices formed by any
m components of xi are positive definite. We shall employ the following condition as a sufficient
condition for our results.

Condition SE (P): Sparse Eigenvalues. There is an absolute sequence �n→∞ such that
with a high probability the maximal and minimal �ns-sparse eigenvalues are bounded from above
and away from zero. Namely with probability at least 1−�n,

κ ′�φmin(�ns)[En[xix
′
i]]�φmax(�ns)[En[xix

′
i]]�κ ′′,
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where 0<κ ′<κ ′′<∞ are absolute constants.

Comment 3.2. It is well known that Condition SE is quite plausible for many designs of interest.
For instance, Condition SE holds if

(a) (xi)n
i=1 are i.i.d. zero-mean sub-Gaussian random vectors that have population Gram

matrix E[xix′i] with minimal and maximal slogn-sparse eigenvalues bounded away from
zero and from above by absolute constants where s(logn)(logp)/n�δn→0;

(b) (xi)n
i=1 are i.i.d. bounded zero-mean random vectors with ‖xi‖∞�Kn a.s. such that E[xix′i]

has minimal and maximal slogn-sparse eigenvalues bounded from above and away from
zero by absolute constants, where K2

n s(log3n){log(p∨n)}/n�δn→0.

Claim (a) holds by Theorem 3.2 in Rudelson and Zhou (2011)16 and claim (b) holds by
Theorem 1.8 in Rudelson and Zhou (2011). Recall that a standard assumption in econometric
research is to assume that the population Gram matrix E[xix′i] has eigenvalues bounded from
above and away from zero, see e.g. Newey (1997). The conditions above allow for this and more
general behaviour, requiring only that the slogn sparse eigenvalues of the population Gram matrix
E[xix′i] are bounded from below and from above. ‖

The next condition imposes moment conditions on the structural errors and regressors.

Condition SM (P): Structural Moments. There are absolute constants 0<c<C<∞ and
4<q<∞ such that for (ỹi,εi)= (yi,ζi) and (ỹi,εi)= (di,vi) the following conditions hold:

(i) Ē[|di|q]�C, c�E[ζ 2
i |xi,vi]�C and c�E[v2

i |xi]�C a.s. 1� i�n,
(ii) Ē[|εi|q]+Ē[ỹ2

i ]+ max
1�j�p

{Ē[x2
ij ỹ

2
i ]+Ē[|x3

ijε
3
i |]+1/Ē[x2

ij]}�C,

(iii) log3p/n�δn,

(iv) max
1�j�p

{|(En−Ē)[x2
ijε

2
i ]|+|(En−Ē)[x2

ij ỹ
2
i ]|}+ max

1�i�n
‖xi‖2∞

slog(n∨p)

n
�δn wp 1−�n.

These conditions ensure good model selection performance of feasible Lasso applied to equations
(2.6) and (2.7). These conditions also allow us to invoke moderate deviation theorems for self-
normalized sums from Jing et al. (2003) to bound some important error components.

3.2. The main result

The following is the main result of this article. It shows that the post-double selection estimator is
root-n consistent and asymptotically normal. Under homoscedasticity this estimator achieves the
semi-parametric efficiency bound. The result also verifies that plug-in estimates of the standard
errors are consistent.

Theorem 1. (Estimation and Inference on Treatment Effects). Let {Pn} be a sequence of data-
generating processes. Assume conditions ASTE (P), SM (P), and SE (P) hold for P=Pn for each
n. Then, the post-double-Lasso estimator α̌, constructed in the previous section, obeys as n→∞

σ−1
n
√

n(α̌−α0)�N(0,1),

where σ 2
n =[Ēv2

i ]−1Ē[v2
i ζ

2
i ][Ēv2

i ]−1. Moreover, the result continues to apply if σ 2
n is

replaced by σ̂ 2
n =[En̂v2

i ]−1
En [̂v2

i ζ̂
2
i ][En̂v2

i ]−1, for ζ̂i :=[yi−diα̌−x′iβ̌]{n/(n− ŝ−1)}1/2 and

16. See also Zhou (2009) and Baraniuk et al. (2008).
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v̂i :=di−x′iβ̂, i=1,...,n where β̂∈argminβ{En[(di−x′iβ)2] :βj=0,∀j /∈ Î} where Î is defined
in (2.9).

Comment 3.3. (Achieving the semi-parametric efficiency bound). Note that under i.i.d.
sampling under P and conditional homoscedasticity, namely E[ζ 2

i |zi]=E[ζ 2
i ], the asymptotic

variance σ 2
n reduces to E[v2

i ]−1E[ζ 2
i ], which is the semi-parametric efficiency bound for the

partially linear model of Robinson (1988). ‖

Corollary 1. (Uniformly Valid Confidence Intervals). Let Pn be the collection of all data-
generating processes P for which conditions ASTE(P), SM (P), and SE (P) hold for given n, and
let P=∩n�n0Pn be the collection of data-generating processes for which the conditions above
hold for all n�n0. Let c(1−ξ )=�−1(1−ξ/2). The confidence regions based upon (α̌,σ̂n) are
valid uniformly in P∈P:

lim
n→∞sup

P∈P
|P(α0∈[α̌±c(1−ξ )̂σn/

√
n])−(1−ξ )|=0.

By exploiting both equations (2.4) and (2.5) for model selection, the post-double-selection
method creates the necessary adaptivity that makes it robust to imperfect model selection.
Robustness of the post-double selection method is reflected in the fact that Theorem 1 permits
the data-generating process to change with n. Thus, the conclusions of the theorem are valid for
a wide variety of sequences of data-generating processes which in turn define the regions P of
uniform validity of the resulting confidence sets. In contrast, the standard post-selection method
based on (2.4) produces confidence intervals that do not have close to correct coverage in many
cases.

Comment 3.4. Our approach to uniformity analysis is most similar to that of Romano (2004),
Theorem 4. It proceeds under triangular array asymptotics, with the sequence of dgps obeying
certain constraints; then these results imply uniformity over sets of dgps that obey the constraints
for all sample sizes. This approach is also similar to the classical central limit theorems for sample
means under triangular arrays, and does not require the dgps to be parametrically (or otherwise
tightly) specified, which then translates into uniformity of confidence regions. This approach
is somewhat different in spirit to the generic uniformity analysis suggested by Andrews et al.
(2011). ‖
Comment 3.5. (Limits of uniformity). Uniformity for inference about α0 holds over a large
class of approximately sparse models: models where both g(·) and m(·) are well approximated
by s�n1/2 terms so that they are both estimable at o(n−1/4) rates. Approximate sparsity is more
general than assumptions often used to justify series estimation of partially linear models, so
the uniformity regions—the sets of models over which inference is valid—are substantial in that
regard. We formally demonstrate this through a series of examples in Section 4.1. Of course,
for every interesting class of models and any non-trivial inference method, one could find an
even bigger class of models where the uniformity does not apply. For example, our approach
will not work in “dense” models where g(·) or m(·) is not well approximated unless s�n1/2

terms are used; such dense models would generally involve many small coefficients that decay
to zero very slowly or not at all. In the series case, such a model corresponds to a deviation from
smoothness towards highly non-smooth functions, for example functions generated as realized
paths of a white noise process. The fact that our results do not cover such models motivates further
research work on inference procedures that would provide valid inference when one considers
deviations from the given class of models that are deemed important. In the simulations in
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Section 4.2, we consider incorporating the ridge fit along with the other controls to be selected
over using Lasso to build extra robustness against such deviations away from approximately
sparse models. ‖

3.3. Inference after double selection by a generic selection method

The conditions provided so far offer a set of sufficient conditions that are tied to the use of
Lasso as the model selector. The purpose of this section is to prove that the main results
apply to any other model selection method that is able to select a sparse model with good
approximation properties. As in the case of Lasso, we allow for imperfect model selection. Next
we state a high-level condition that summarizes a sufficient condition on the performance of a
model selection method that allows the post-double selection estimator to attain good inferential
properties.

Condition HLMS (P): High-Dimensional Linear Model Selection. A model selector
provides possibly data-dependent sets Î1∪ Î2⊆ Î⊂{1,...,p} of covariate names such that, with
probability 1−�n, |̂I|�Cs and

min
β:βj=0,j �∈̂I1

√
En[(m(zi)−x′iβ)2]�δnn−1/4 and min

β:βj=0,j �∈̂I2

√
En[(g(zi)−x′iβ)2]�δnn−1/4.

Condition HLMS requires that with high probability the selected models are sparse and
generate good approximations for the functions g and m. Examples of methods producing
such models include the Dantzig selector (Candès and Tao, 2007), feasible Dantzig selector
(Gautier and Tsybakov, 2011), Bridge estimator (Huang et al., 2008), SCAD penalized least
squares (Fan and Li, 2001), square-root-Lasso (Belloni et al., 2011), and thresholded Lasso
(Belloni and Chernozhukov, 2013), to name a few. We emphasize that, similarly to the previous
arguments, these conditions allow for imperfect model selection. Nonetheless we note that
Condition HLMS implicitly assumes that tuning parameters of the model selection procedure
are set properly to achieve these conditions.

The following result establishes the inferential properties of a generic post-double-selection
estimator.

Theorem 2. (Estimation and Inference on Treatment Effects under High-Level Model Selection).
Let Pn be the collection of all data-generating processes P for which conditions ASTE(P), SM
(P), SE (P), and HLMS (P) hold for given n. (1) Then under any sequence Pn∈Pn, the generic
post-double-selection estimator α̌ based on Î, as defined in (2.8), obeys

σ−1
n
√

n(α̌−α0)�N(0,1),

where σ 2
n =[Ēv2

i ]−1Ē[v2
i ζ

2
i ][Ēv2

i ]−1. Moreover, the result continues to apply if σ 2
n is replaced

by σ̂ 2
n =[En̂v2

i ]−1
En [̂v2

i ζ̂
2
i ][En̂v2

i ]−1, for ζ̂i :=[yi−diα̌−x′iβ̌]{n/(n− ŝ−1)}1/2 and v̂i :=di−x′iβ̂,
i=1,...,n where β̂∈argminβ{En[(di−x′iβ)2] :βj=0,∀j /∈ Î}. (2) Moreover, let P=∩n�n0Pn be
the collection of data-generating processes for which the conditions above hold for all n�n0.
The confidence regions based upon (α̌,σ̂n) are valid uniformly in P∈P:

lim
n→∞sup

P∈P
|P
(
α0∈[α̌±�−1(1−ξ/2)̂σn/

√
n]
)
−(1−ξ )|=0.
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4. THEORETICAL AND MONTE-CARLO EXAMPLES

4.1. Theoretical examples

The purpose of this section is to give examples that highlight the range of the applicability
of the proposed method. In these examples, we specify primitive conditions that cover certain
non-parametric models and high-dimensional parametric models as corollaries. A Supplementary
Appendix provides proofs for these corollaries. We emphasize that our main regularity conditions
cover even more general models which combine various features of these examples. In all
examples, the model is the partially linear model (2.2)–(2.3) of Section 2, however, the structure
for g and m will vary across examples, and so will the assumptions on the error terms ζi and vi.

4.1.1. Parametric model with fixed p. We start out with a simple example, in which the
dimension p of the regressors is fixed. In practical terms this example approximates cases with
p small compared to n. This simple example is important since standard post-single-selection
methods fail even in this simple case. Specifically, they produce confidence intervals that are
not valid uniformly in the underlying data-generating process; see Leeb and Pötscher (2008a). In
contrast, the post-double-selection method produces confidence intervals that are valid uniformly
in the underlying data-generating process.

Example 1. (Parametric Model with Fixed p.) Consider (�,A,P) as the probability space, on
which we have {(yi,zi,di)}∞i=1 as i.i.d. vectors obeying the model (2.2)–(2.3) with

g(zi)=
p∑

j=1

βg0jzij, m(zi)=
p∑

j=1

βm0jzij. (4.25)

For estimation we use xi= (zij,j=1,...,p)′. We assume that there are absolute constants 0<b<
B<∞, qx�q>4, with 4/qx+4/q<1, such that

b�E[ζ 2
i |xi,vi], E[|ζ q

i | |xi,vi]�B, b�E[v2
i |xi], E[|vq

i | |xi]�B. (4.26)

Corollary 2. (Parametric Example with Fixed p). Let P be the collection of all regression
models P that obey the conditions set forth in Example 1 for all n for the given constants
(p,b,B,qx,q). Then, any P∈P obeys Conditions ASTE (P) with s=p, SE (P), and SM (P) for
all n�n0, with the constants n0 and (κ ′,κ ′′,c,C) and sequences �n and δn in those conditions
depending only on (p,b,B,qx,q). Therefore, the conclusions of Theorem 1 hold for any sequence
Pn∈P, and the conclusions of Corollary 1 on the uniform validity of confidence intervals apply
uniformly in P∈P.

4.1.2. Nonparametric examples. The next examples are more substantial and include
infinite-dimensional models which we approximate with linear functional forms with potentially
very many regressors, p�n. The key to estimation in these models is a smoothness condition
that requires regression coefficients to decay at some rates. In series estimation, this condition is
often directly connected to smoothness of the regression function.

Let a and A be positive constants. We shall say that a sequence of coefficients

θ={θj,j=1,2,...}
is a-smooth with constant A if

|θj|�Aj−a, j=1,2,...,
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which will be denoted as θ ∈Sa
A. We shall say that a sequence of coefficients θ={θj,j=1,2,...}

is a-smooth with constant A after p-rearrangement if

|θ(j)|�Aj−a, j=1,2,...,p, |θj|�Aj−a, j=p+1,p+2,...,

which will be denoted as θ ∈Sa
A(p), where {|θ(j)|,j=1,...,p} denotes the decreasing rearrangement

of the numbers {|θj|,j=1,...,p}. Since Sa
A⊂Sa

A(p), the second kind of smoothness is strictly more
general than the first kind.

Here we use the term “smoothness” motivated by Fourier series analysis where smoothness
of functions often translates into smoothness of the Fourier coefficients in the sense that is
stated above; see, e.g.Kerkyacharian and Picard (1992). For example, if a function h : [0,1]d �→R

possesses r>0 continuous derivatives uniformly bounded by a constant M and the terms Pj are
compactly supported Daubechies wavelets, then h can be represented as h(z)=∑∞j=1Pj(z)θhj,

with |θhj|�Aj−r/d−1/2 for some constant A; see Kerkyacharian and Picard (1992). We also note
that the second kind of smoothness is considerably more general than the first since it allows
relatively large coefficients to appear anywhere in the series of the first p coefficients. In contrast,
the first kind of smoothness only allows relatively large coefficients among the early terms in
the series. Lasso-type methods are specifically designed to deal with the generalized smoothness
of the second kind and perform equally well under both kinds of smoothness. In the context
of series applications, smoothness of the second kind allows one to approximate functions that
exhibit oscillatory phenomena or spikes, which are associated with “high-order” series terms. An
example of this is the wage function example given in Belloni et al. (2011).

Before we proceed to other examples we discuss a way to generate sparse approximations
in infinite-dimensional examples. Consider, for example, a function h that can be represented
as h(zi)=∑∞j=1θhjPj(zi) with coefficients θh∈Sa

A(p). In this case we can construct sparse
approximations by simply thresholding to zero all coefficients smaller than 1/

√
n and with

indices j�p. This generates a sparsity index s�A
1
a n

1
2a . The non-zero coefficients could be further

reoptimized by using the least squares projection. More formally, given a sparsity index s>0, a
target function h(zi), and terms xi= (Pj(zi) : j=1,...,p)′ ∈R

p, we let

βh0 := arg min‖β‖0�s
E[(h(zi)−x′iβ)2], (4.27)

and define x′iβh0 as the best s-sparse approximation to h(zi).

Example 2. (Gaussian Model with Very Large p.) Consider (�,A,P) as the probability space on
which we have {(yi,zi,di)}∞i=1 as i.i.d. vectors obeying the model (2.2)–(2.3) with

g(zi)=
∞∑

j=1

θgjzij, m(zi)=
∞∑

j=1

θmjzij. (4.28)

Assume that the infinite dimensional vector wi= (ζi,vi,z′i)′ with jth element denoted wi(j) is
jointly Gaussian with covariance operator [Cov(wi(j),wi(k))]j,k≥1 that has minimal and maximal
eigenvalues bounded below by an absolute constant κ >0 and above by an absolute constant
κ <∞.

The main assumption that guarantees approximate sparsity is a smoothness condition on the
coefficients. Let a>1 and 0<A<∞ be absolute constants. We require that the coefficients of
the expansions in (4.28) are a-smooth with constant A after p-rearrangement, namely

θm= (θmj,j=1,2,...)∈Sa
A(p), θg= (θgj,j=1,2,...)∈Sa

A(p).
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For estimation purposes we shall use xi= (zij,j=1,...,p)′, and assume that |α0|�B and p=pn
obeys

n
1−a

a +χ log2(p∨n)� δ̄n, A1/an
1

2a �pδ̄n, and log3p/n� δ̄n,

for some sequence of positive constants δ̄n↘0 and absolute constants B and χ >0.

Corollary 3. (Gaussian Nonparametric Model). Let Pn be the collection of all dgp P that obey
the conditions set forth in Example 2 for a given n and for the given constants (κ,κ,a,A,B,χ ) and
sequences p=pn and δ̄n. Then, as established in a Supplementary Appendix, any P∈Pn obeys

Conditions ASTE (P) with s=A1/an
1

2a , SE (P), and SM (P) for all n�n0, with constants n0 and
(κ ′,κ ′′,c,C) and sequences�n and δn in those conditions depending only on (κ,κ̄,a,A,B,χ ), p,
and δ̄n. Therefore, the conclusions of Theorem 1 hold for any sequence Pn∈Pn, and the conclusions
of Corollary 1 on the uniform validity of confidence intervals apply uniformly in P∈P=∩n�n0Pn.

Example 3. (Series Model with Very Large p.) Consider (�,A,P) as the probability space, on
which we have {(yi,zi,di)}∞i=1 as i.i.d. vectors obeying the model (2.2)–(2.3), with

g(zi)=
∞∑

j=1

θgjPj(zi), m(zi)=
∞∑

j=1

θmjPj(zi), (4.29)

where zi has support [0,1]d with density bounded from below by constant f >0 and

above by constant f̄ , and {Pj,j=1,2,...} is an orthonormal basis on L2[0,1]d with bounded
elements, i.e. maxz∈[0,1]d |Pj(z)|�B for all j=1,2,.... Here all constants are taken to be
absolute. Examples of such orthonormal bases include canonical trigonometric bases, e.g.
{1,√2cos(2π jz),

√
2sin(2π jz) : j�1} where z∈[0,1].

Let a>1 and 0<A<∞ be absolute constants. We require that the coefficients of the
expansions in (4.29) are a-smooth with constant A after p-rearrangement, namely

θm= (θmj,j=1,2,...)∈Sa
A(p), θg= (θgj,j=1,2,...)∈Sa

A(p).

For estimation purposes we shall use xi= (Pj(zi),j=1,...,p)′, and assume that p=pn obeys

n(1−a)/a log2(p∨n)� δ̄n, A1/an
1

2a �pδ̄n and log3p/n� δ̄n,

for some sequence of absolute constants δ̄n↘0. We assume that there are some absolute constants
b>0, B<∞, q>4, with (1−a)/a+4/q<0, such that

|α0|�B, b�E[ζ 2
i |xi,vi], E[|ζi|q |xi,vi]�B, b�E[v2

i |xi], E[|vi|q |xi]�B. (4.30)

Corollary 4. (Non-parametric Model with Sieve-type Regressors). Let Pn be the collection of
all regression models P that obey the conditions set forth above for a given n. Then any P∈Pn obeys

Conditions ASTE (P) with s=A1/an
1

2a , SE (P), and SM (P) for all n�n0, with absolute constants
in those conditions depending only on (f , f̄ ,a,A,b,B,q) and δ̄n. Therefore, the conclusions of
Theorem 1 hold for any sequence Pn∈Pn, and the conclusions of Corollary 1 on the uniform
validity of confidence intervals apply uniformly in P∈P=∩n�n0Pn.
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4.2. Monte-Carlo examples

In this section, we examine the finite-sample properties of the post-double-selection method and
compare its performance to that of a standard post-single-selection method.

All of the simulation results are based on the model

yi=d′iα0+x′iθg+σy(di,xi)ζi (4.31)

di=x′iθm+σd(xi)vi (4.32)

where (ζi,vi)′ ∼N(0,I2) with I2 the 2×2 identity matrix, p=dim(xi)=200, the covariates
xi∼N(0,�) with �kj= (0.5)|j−k|, α0= .5, and the sample size n is set to 100. Inference results
for all designs are based on conventional t-tests with standard errors calculated using the
heteroscedasticity consistent jackknife variance estimator discussed in MacKinnon and White
(1985).

We report results from three different dgp’s. In the first two dgp’s, we set θg,j=cyβ0,j

and θm,j=cdβ0,j with β0,j= (1/j)2 for j=1,...,200. The first dgp, which we label “Design
1”, uses homoscedastic innovations with σy(di,xi)=σd(xi)=1. The second dgp, “Design 2”, is

heteroscedastic with σd(xi)=
√

(1+x′iβ0)2

En(1+x′iβ0)2 and σy(di,xi)=
√

(1+α0di+x′iβ0)2

En(1+α0di+x′iβ0)2 . The constants cy

and cd are chosen to generate desired population values for the reduced form R2’s, i.e. the R2’s for
equations (2.6) and (2.7). For each equation, we choose cy and cd to generate R2=0,0.2,0.4,0.6,
and 0.8. In the heteroscedastic design, we choose cy and cd based on R2 as if (4.31) and (4.32)
held with vi and ζi homoscedastic and label the results by R2 as in Design 1. In the third design
(“Design 3”), we use a combination of deterministic and random coefficients. For the deterministic
coefficients, we set θg,j=cy(1/j)2 for j≤5 and θm,j=cd(1/j)2 for j≤5. We then generate the
remaining coefficients as iid draws from (θg,j,θm,j)′ ∼N(02×1,(1/p)I2). For each equation, we
choose cy and cd to generate R2=0,0.2,0.4,0.6, and 0.8 in the case that all of the random
coefficients are exactly equal to 0 and label the results by R2 as in Design 1. We draw new x’s,
ζ ’s, and v’s at every simulation replication, and we also generate new θ ’s at every simulation
replication in Design 3.

We consider Designs 1 and 2 to be baseline designs. These designs do not have exact
sparse representations but have coefficients that decay quickly so that approximately sparse
representations are available. Design 3 is meant to introduce a modest deviation from the
approximately sparse model towards a model with many small, uncorrelated coefficients. Using
this we shall document that our proposed procedure still performs reasonably well, although
it could be improved by incorporation of a ridge fit as one of regressors over which selection
occurs.17

We report results for five different procedures. Two of the procedures are infeasible
benchmarks: Oracle and Double-Selection Oracle estimators, which use knowledge of the true
coefficient structures θg and θm and are thus unavailable in practice. The Oracle estimates α by
running ordinary least squares of yi−x′iθg on di, and the Double-Selection Oracle estimates α
by running ordinary least squares of yi−x′iθg on di−x′iθm. The other procedures we consider are

17. In a Supplementary Appendix, we present results for 26 additional designs. The results presented in this
section are sufficient to illustrate the general patterns from the larger set of results. In particular, the post-double-Lasso
performed very well across all simulation designs where approximate sparsity provides a reasonable description of the
dgp. Unsurprisingly, the performance deteriorates as one deviates from the smooth/approximately sparse case. However,
the post-double-Lasso outperformed all other feasible procedures considered in all designs.
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feasible. One procedure is the standard post-single selection estimator—the Post-Lasso—which
applies Lasso to equation (4.31) without penalizing α, the coefficient on di, to select additional
control variables from among x. Estimates of α0 are then obtained by OLS regression of yi on
di and the set of additional controls selected in the Lasso step and inference using the Post-
Lasso estimator proceeds using conventional heteroscedasticity robust OLS inference from this
regression. Post-Double-Selection or Post-Double-Lasso is the feasible procedure advocated in
this paper. We run Lasso of yi on xi to select a set of predictors for yi and run Lasso of di
on xi to select a set of predictors for di. α0 is then estimated by running OLS regression of yi
on di and the union of the sets of regressors selected in the two Lasso runs, and inference is
simply the usual heteroscedasticity robust OLS inference from this regression.18 Post-Double-
Selection + Ridge is an ad hoc variant of Post-Double-Selection in which we add the ridge fit
from equation (4.32) as an additional potential regressor that may be selected by Lasso. The ridge
fit for di is x′i(X ′X+λdIp)−1X ′D where λd is obtained by 10-fold cross-validation. This procedure
is motivated by a desire to add further robustness in the case that many small coefficients are
suspected and zeroing out these small coefficients may be undesirable. Further exploration of
procedures that perform well, both theoretically and in simulations, in the presence of many
small coefficients is an interesting avenue for additional research.

We start by summarizing results in Table 1 for (R2
y ,R

2
d)= (0,0.2),(0,0.8),(0.8,0.2), and

(0.8,0.8) where R2
y is the population R2 from regressing y on x (Structure R2) and R2

d is the

population R2 from regressing d on x (First Stage R2). We report root-mean-square-error (RMSE)
for estimating α0 and size of 5% level tests (Rej. Rate). As should be the case, the Oracle
and Double-Selection Oracle, which are reported to provide the performance of an infeasible
benchmark, perform well relative to the feasible procedures across the three designs. We do
see that the feasible Post-Double-Selection procedures perform similarly to the Double-Selection
Oracle without relying on ex ante knowledge of the coefficients that go in to the control functions,
θg and θm. On the other hand, the Post-Lasso procedure generally does not perform as well
as Post-Double-Selection and is very sensitive to the value of R2

d . While Post-Lasso performs
adequately when R2

d is small, its performance deteriorates quickly as R2
d increases. This lack

of robustness of traditional variable selection methods such as Lasso which were designed
with forecasting, not inference about treatment effects, in mind is the chief motivation for our
advocating the Post-Double-Selection procedure when trying to infer structural or treatment
parameters.

We provide further details about the performance of the feasible estimators in Figures 2,
3, and 4 which plot size of 5% level tests, bias, and standard deviation for the Post-Lasso,
Double-Selection (DS), and Double-Selection Oracle (DS Oracle) estimators of the treatment
effect across the full set of R2 values considered. Figure 2, 3, and 4 respectively report the
results from Design 1, 2, and 3. The figures are plotted with the same scale to aid comparability,
and rejection frequencies for Post-Lasso were censored at 0.5 for readability. Perhaps the most
striking feature of the figures is the poor performance of the Post-Lasso estimator. The Post-
Lasso estimator performs poorly in terms of size of tests across many different R2 combinations
and can have an order of magnitude more bias than the corresponding Post-Double-Selection
estimator. The behavior of Post-Lasso is quite non-uniform across R2 combinations, and Post-
Lasso does not reliably control size distortions or bias except in the case where the controls are

18. All Lasso estimates require the choice of penalty parameter and loadings. We use the iterative procedure of
Belloni et al. (2012) to estimate the penalty loadings using a maximum of five iterations. We set the penalty parameter
according to equation (18) in Belloni and Chernozhukov (2011b) with c=1.1, α= .05 and σ =1 since the variance of
the score is accounted for in the penalty loadings.
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TABLE 1
Simulation Results for Selected R2 Values

First Stage R2=0.2 First Stage R2=0.2 First Stage R2=0.8 First Stage R2=0.8
Structure R2=0 Structure R2=0.8 Structure R2=0 Structure R2=0.8

Estimation procedure RMSE Rej. Rate RMSE Rej. Rate RMSE Rej. Rate RMSE Rej. Rate

A. Design 1. Quadratic decay
Oracle 0.090 0.048 0.090 0.048 0.045 0.057 0.045 0.057
Double-selection oracle 0.102 0.050 0.102 0.050 0.143 0.047 0.143 0.047
Post-Lasso 0.137 0.205 0.110 0.064 0.402 0.987 0.489 0.974
Double-selection 0.107 0.063 0.107 0.058 0.109 0.074 0.104 0.062
Double-selection + ridge 0.260 0.064 0.256 0.055 0.132 0.049 0.130 0.050

B. Design 2. Quadratic decay with heteroscedasticity
Oracle 0.139 0.060 0.139 0.060 0.066 0.062 0.066 0.062
Double-selection Oracle 0.169 0.072 0.169 0.072 0.225 0.085 0.225 0.085
Post-Lasso 0.175 0.139 0.178 0.097 0.409 0.994 0.501 0.993
Double-selection 0.165 0.098 0.167 0.081 0.162 0.082 0.165 0.083
Double-selection + ridge 0.308 0.060 0.290 0.058 0.183 0.064 0.185 0.075

C. Design 3. Quadratic decay with random coefficients
Oracle 0.070 0.055 0.070 0.055 0.041 0.060 0.041 0.060
Double-selection oracle 0.114 0.056 0.114 0.056 0.151 0.058 0.151 0.058
Post-Lasso 0.105 0.082 0.131 0.133 0.329 0.940 0.435 0.953
Double-selection 0.109 0.055 0.118 0.075 0.105 0.056 0.117 0.086
Double-selection + ridge 0.227 0.040 0.230 0.035 0.151 0.054 0.153 0.057

Note: The table reports root-mean-square-error (RMSE) rejection rates for 5% level tests (Rej. Rate) from a Monte
Carlo simulation experiment. Results are based on 1000 simulation replications. Data in Panels A and B are based on
models with coefficients that decay quadratically, and the data in Panel C are based on a with five quadratically decaying
coefficients and 95 random coefficients. Further details about the simulation models are provided in the text as are details
about the estimation procedures. Rejection rates are for t-tests of the null hypothesis that the structural coefficient is equal
to the true population value and are formed using jack-knife standard errors that are robust to heteroscedasticity; see
MacKinnon and White (1985).

uncorrelated with the treatment (where First-Stage R2 equals 0) and thus ignorable. In contrast, the
Post-Double-Selection estimator performs relatively well across the full range of R2 combinations
considered. The Post-Double-Selection estimator’s performance is also quite similar to that of
the infeasible Double-Selection Oracle across the majority of R2 values considered. Comparing
across Figures 2 and 3, we see that size distortions for both the Post-Double-Selection estimator
and the Double-Selection Oracle are somewhat larger in the presence of heteroscedasticity but
that the basic patterns are more-or-less the same across the two figures. Looking at Figure 4, we
also see that the addition of small independent random coefficients results in somewhat larger
size distortions for the Post-Double-Selection estimator than in the other homoscedastic design,
Design 1, though the procedure still performs relatively well.

In the final figure, Figure 5, we compare the performance of the Post-Double-Selection
procedure to the ad hoc Post-Double-Selection procedure that selects among the original set
of variables augmented with the ridge fit obtained from equation (4.32). We see that the addition
of this variable does add robustness relative to Post-Double-Selection using only the raw controls
in the sense of producing tests that tend to have size closer to the nominal level. This additional
robustness is a good feature, though it comes at the cost of increased RMSE which is especially
prominent for small values of the first-stage R2.

The simulation results are favourable to the Post-Double-Selection estimator. In the
simulations, we see that the Post-Double-Selection procedure provides an estimator of a treatment
effect in the presence of a large number of potential confounding variables that performs similarly
to the infeasible estimator that knows the values of the coefficients on all of the confounding
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Figure 2

This figure presents rejection frequencies for 5% level tests, biases, and standard deviations for estimating the treatment

effect from Design 1 of the simulation study that has quadratically decaying coefficients and homoscedasticity. Results

are reported for a one-step Post-Lasso estimator, our proposed double selection procedure, and an infeasible OLS

estimator that relies on knowledge of the true values of the coefficients in equations (2.6) and (2.7). Reduced form and

first stage R2 correspond to the population R2 of (2.6) and (2.7), respectively. Note that rejection frequencies are

censored at 0.5.

variables. Overall, the simulation evidence supports our theoretical results and suggests that the
proposed Post-Double-Selection procedure can be a useful tool to researchers doing structural
estimation in the presence of many potential confounding variables. It also shows, as a contrast,
that the standard Post-Single-Selection procedure provides poor inference and therefore is not a
reliable tool to these researchers.

5. GENERALIZATIONS AND HETEROGENEOUS TREATMENT EFFECTS

In order to discuss generalizations in a simple manner, we assume i.i.d sampling and no
approximation errors for a moment (i.e.we let g(zi)=x′iβg0 and m(zi)=x′iβm0, where xi=P(zi)).
In the development of results for the partially linear model, we implicitly considered a moment
condition for the target parameter α0 given by

E[ψ(yi−diα0−x′iβ)vi]=0, (5.33)

 at M
ichigan State U

niversity on February 10, 2015
http://restud.oxfordjournals.org/

D
ow

nloaded from
 

http://restud.oxfordjournals.org/


[11:59 18/4/2014 rdt044.tex] RESTUD: The Review of Economic Studies Page: 631 608–650

BELLONI ET AL. INFERENCE AFTER MODEL SELECTION 631

0
0.2

0.4
0.6

0

0.5

0
0.1
0.2
0.3
0.4

Second Stage R2

Post-Lasso RP(0.05)

First Stage R2 Second Stage R2First Stage R2 Second Stage R2First Stage R2

Second Stage R2First Stage R2 Second Stage R2First Stage R2 Second Stage R2First Stage R2

Second Stage R2First Stage R2 Second Stage R2First Stage R2 Second Stage R2First Stage R2

0
0.2

0.4
0.6

0

0.5

-0.5

0

0.5

Post-Lasso Mean Bias

0
0.2

0.4
0.6

0

0.5

0
0.1
0.2
0.3
0.4

Post-Lasso Std Dev.

0
0.2

0.4
0.6

0

0.5

0
0.1
0.2
0.3
0.4

DS RP(0.05)

0
0.2

0.4
0.6

0

0.5

-0.5

0

0.5

DS Mean Bias

0
0.2

0.4
0.6

0

0.5

0
0.1
0.2
0.3
0.4

DS Std Dev.

0
0.2

0.4
0.6

0

0.5

0
0.1
0.2
0.3
0.4

Oracle DS RP(0.05)

0
0.2

0.4
0.6

0

0.5

-0.5

0

0.5

Oracle DS Mean Bias

0
0.2

0.4
0.6

0

0.5

0
0.1
0.2
0.3
0.4

Oracle DS Std Dev.

Figure 3

This figure presents rejection frequencies for 5% level tests, biases, and standard deviations for estimating the treatment

effect from Design 2 of the simulation study which has quadratically decaying coefficients and heteroscedasticity.

Results are reported for a one-step Post-Lasso estimator, our proposed double selection procedure, and an infeasible

OLS estimator that relies on knowledge of the true values of the coefficients in equations (2.6) and (2.7). Reduced form

and first stage R2 correspond to the population R2 of (2.6) and (2.7), respectively. Note that rejection frequencies are

censored at 0.5.

where xi=P(zi), ψ(u)=u, and vi are measurable functions of zi, the “instruments”. We selected
the instruments vi such that the equation is first-order insensitive to the parameter β at β=βg0:

∂

∂β
E[ψ(yi−diα0−x′iβ)vi]

∣∣∣∣
β=βg0

=0. (5.34)

Note that when ψ(u)=u, the “instrument” vi=di−m(zi) precisely implements this condition. If
(5.34) holds, the estimator of α0 based upon the sample analogue of (5.33) gets “immunized”
against non-regular estimation of β0, for example, via a post-selection procedure or other
regularized estimators. Such immunization ideas are in fact behind the classical Frisch-Waugh
and Robinson (1988) partialling out technique in the linear setting and the Neyman (1979)’s
C(α) test in the nonlinear setting. One way to view our contribution is as a recognition of the
importance of this immunization in the context of post-selection inference leading to thinking
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Figure 4

This figure presents rejection frequencies for 5% level tests, biases, and standard deviations for estimating the treatment

effect from Design 3 of the simulation study that has five quadratically decaying coefficients and 95 Gaussian random

coefficients. Results are reported for a one-step Post-Lasso estimator, our proposed double selection procedure, and an

infeasible OLS estimator that relies on knowledge of the true values of the coefficients in equations (2.6) and (2.7).

Reduced form and first stage R2 correspond to what would be the population R2 of (2.6) and (2.7) if all of the random

coefficients were equal to zero. Note that rejection frequencies are censored at 0.5.

about a post-selection approach to inference on the target parameter that uses this condition.19

Generalizations to non-linear models, where ψ is non-linear and can correspond to a likelihood
score or quantile check function are given in Belloni et al. (2013a) and Belloni et al. (2013b); in
these generalizations, achieving (5.34) is also critical.

In the context of the present paper, an important generalization is the estimation of average
treatment effects (ATE) when treatment effects are fully heterogeneous and the treatment variable
is binary, di∈{0,1}. We consider i.i.d. vectors {(yi,di,zi)}∞i=1 on the probability space (�,A,P),

19. To the best of our knowledge, Belloni et al. (2010) and Belloni et al. (2012) were the first to use this
immunization/orthoganility property in the p�n setup, in the context of performing inference on low-dimensional
parameters in the instrumental regression, where the nuisance function being estimated via regularization or post-
selection is the optimal instrument. There the orthogonality property was used to establish the asymptotic normality
and
√

n consistency of the resulting estimator under rich sequence of data-generating processes Pn, which translates to
uniformity over suitably defined regions.
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Figure 5

This figure presents rejection frequencies for 5% level tests and RMSE’s for estimating the treatment effect from Design

3 of the simulation study that has five quadratically decaying coefficients and 95 Gaussian random coefficients. Results

in the first column are for the proposed double selection procedure, and the results in the second column are for the

proposed double selection procedure when the ridge fit from (2.6) is added as an additional potential control. Reduced

form and first stage R2 correspond to what would be the population R2 of (2.6) and (2.7) if all of the random coefficients

were equal to zero. Note that the vertical axis on the rejection frequency graph is from 0 to 0.1.

and suppose the the outcome and propensity equations are

yi=g(di,zi)+ζi, E[ζi |zi,di]=0, (5.35)

di=m(zi)+vi, E[vi |zi]=0. (5.36)

A common target parameter of interest in this model is the average treatment effect (ATE),

E[g(1,zi)−g(0,zi)].

Another common target parameter is the average treatment effect for the treated (ATT) E[g(1,zi)−
g(0,zi)|di=1]. In this model, di is not additively separable, and we no longer have a partially
linear model, but our analysis easily extends to this case.

The confounding factors zi affect the policy variable via the propensity score m(zi) and the
outcome variable via the function g(di,zi). Both of these functions are unknown and potentially
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complicated. We use control terms xi=P(zi) in approximating g(di,zi) and m(zi). Specifically,
we write (2.2) and (2.3) as

yi= x̃′iβg0+rgi︸ ︷︷ ︸
g(di,zi)

+ζi, di=�(x′iβm0)+rmi︸ ︷︷ ︸
m(zi)

+vi, (5.37)

where rgi and rmi are approximation errors;

x̃i := (dix
′
i,(1−di)x

′
i)
′; βg0 := (β ′g0,1,β

′
g0,0)′; (5.38)

x′iβg0,1, x′iβg0,0, and�(x′iβm0) are approximations to g(1,zi), g(0,zi), and m(zi); and�(u)=u for
the case of linear link and �(u)=eu/(1+eu) for the case of the logistic link. In order to allow
for a flexible specification and incorporation of pertinent confounding factors, the dimension
of the vector of controls, xi=P(zi), can be large relative to the sample size. We use post-Lasso
estimators ĝ(d,z)= x̃′β̂g0 and m̂(z)=�(x′β̂m0) of functions g(d,z) and m(z) based upon equations
(5.37)-(5.37). In case of using the logistic link �, Lasso for logistic regression is as defined in
van de Geer (2008) and Bach (2010), and the associated post-Lasso estimators are as defined in
Belloni et al. (2013b).

Identification of the true value α0 of the target parameter α, either the ATE or ATT, will be
based on a moment condition of type

E[ϕ(α,ωi,h0(zi))]=0, (5.39)

and the “post-double-selection estimator” α̌ will be based on the finite-sample analogue of the
moment condition

En
[
ϕ(α̌,ωi ,̂h0(ωi))

]=0, (5.40)

where ωi= (yi,di,zi)′ where ϕ, h0, ĥ0 differ depending on the target and are defined below.
For estimation of the ATE, we employ

ϕ(α,ωi,h(zi)) :=α− di(yi−h2(zi))

h3(zi)
− (1−di)(yi−h1(zi)))

1−h3(zi)
−h1(zi)−h2(zi),

h0(zi) := (g(0,zi),g(1,zi),m(zi))
′, ĥ0(zi) := (̂g(0,zi),̂g(1,zi),m̂(zi))

′,
(5.41)

where h(zi) := (hj(zi))3
j=1 is the nuisance parameter, consisting of measurable functions mapping

the support of zi to R×R×(0,1). The true value of this parameter is given above by h0(zi), and
the estimators ĝ(0,zi),̂g(1,zi),m̂(zi) are post-Lasso estimators of functions g and m based upon
equations (5.37)-(5.37). The function ϕ(α0,ωi,h0(zi)) is the efficient influence function of Hahn
(1998) for estimating ATE. Similarly, we use

ϕ(α,ωi,h(zi))= di(yi−h2(zi))

h4
− h3(zi)(1−di)(yi−h1(zi))

(1−h3(zi))h4
+ di(h2(zi)−h1(zi))

h4
−α di

h4
,

h0(zi)= (g(0,zi),g(1,zi),m(zi),E[di])′, ĥ0(zi)= (̂g(0,zi),̂g(1,zi),m̂(zi),En[di]),
(5.42)

for estimation of the ATT. Again, ϕ(α0,ωi,h0(zi)) is the efficient influence function of Hahn
(1998) for estimating the ATT.
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It is straightforward to check that in either of the previous cases, the following “immunization”
property holds:20

∂

∂h
E[ϕ(α0,ωi,h(zi))]h=h0

=0, (5.43)

where the left side denotes the pathwise derivative operator with respect to the functional
parameter h at h=h0. This is a generalization of the condition (5.34). Thus, we reduce dependence
on the estimated values of h0(zi) by using Hahn (1998)’s efficient influence functions just as in
the partially linear case. As before, this property suggests that one can use the selection approach
to regularization in order to estimate the parameter of interest α0.

In what follows, we use ‖wi‖P,q to denote the Lq(P) norm of a random variable wi with law
determined by P, and ‖wi‖Pn,q to denote the empirical Lq(Pn) norm of a random variable with law
determined by the empirical measure Pn=n−1∑n

i=1δwi , i.e. ‖wi‖Pn,q= (n−1∑n
i=1‖wi‖q)1/q.

Consider fixed sequences of positive numbers δn↘0 and�n↘0 and constants C>0,c>0,1/2>
c′>0 which will not vary with P.

Condition HTE (P). Heterogeneous Treatment Effects. Consider i.i.d. vectors
{(yi,di,zi)}∞i=1 on the probability space (�,A,P), such that equations (5.35)-(5.37) holds, with
di∈{0,1}. (i) Approximation errors satisfy ‖rgi‖P,2�δnn−1/4, ‖rgi‖P,∞�δn, and ‖rmi‖P,2�
δnn−1/4, ‖rmi‖P,∞�δn. (ii) With P-probability no less than 1−�n and Kn defined below,
estimation errors satisfy ‖x̃′i(β̂g−βg0)‖Pn,2�δnn−1/4, ‖x′i(β̂m−βm0)‖Pn,2�δnn−1/4, Kn‖β̂m−
βm‖1�δn, Kn‖β̂m−βm0‖1�δn, estimators and approximations are sparse, namely ‖β̂g‖0�
Cs, ‖β̂m‖0�Cs, ‖βg0‖0�Cs, and ‖βm0‖0�Cs, and the empirical and populations norms
are equivalent on sparse subsets, namely sup‖δ‖0�2Cs

∣∣‖x̃′iδ‖Pn,2/‖x̃′iδ‖P,2−1
∣∣�δn. (iii) The

following boundedness conditions hold: ‖xij||P,∞�Kn for each j, ‖g‖P,∞�C, ‖yi‖P,∞�C,
P(c′�m(zi)�1−c′)=1, and ‖ζ 2

i ‖P,2�c. (iv) The sparsity index obeys the following growth
condition, (slog(p∨n))2/n�δn.

These conditions are simple high-level conditions that encode both the approximate sparsity
of the models as well as impose some reasonable behaviour on the sparse estimators of m and g.
These conditions are implied by other more primitive conditions in the literature; see van de Geer
(2008) and Belloni et al. (2012). Sufficient conditions for the equivalence between population and
empirical sparse eigenvalues are given in Lemmas SA.7 and SA.8 in the SupplementaryAppendix.
The boundedness conditions are made to simplify arguments, and they could be removed at the
cost of more complicated proofs and more stringent side conditions.

Theorem 3. (Uniform Post-Double Selection Inference on ATE and ATT). (1) Suppose
that the ATE α0=E[g(1,zi)−g(0,zi)] is the target and we use the estimator α̌ and other
notations defined via (5.40) and (5.41). (2) Or, alternatively, suppose that the ATT α0=
E[g(1,zi)−g(0,zi)|di=1] is the target and we use the estimator α̌ and other notations defined
via (5.40) and (5.42). Consider the set Pn of data generating processes P such that equations
(5.35)–(5.36) and Condition HTE (P) holds for given n. Then in either case, under any sequence
P∈Pn,

σ−1
n
√

n(α̌−α0)�N(0,1), σ 2
n =E[ϕ2(α0,ωi,h0(zi))]. (5.44)

The result continues to hold with σ 2
n replaced by σ̂ 2

n :=En[ϕ2(α̌,ωi ,̂h0(zi))]. Moreover, the
confidence regions based upon post-double selection estimator α̌ have uniform asymptotic

20. In fact, some higher order derivatives also vanish. This higher order property can be exploited in conjunction
with sample-splitting to relax requirements on s. We do not discuss the details of such an approach here for brevity.
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validity: limn→∞supP∈P |P
(
α0∈[α̌±�−1(1−ξ/2)̂σn/

√
n])−(1−ξ )|=0, where P=∩n�n0Pn

is the collection of data-generating processes P for which HTE(P) holds for all n�n0.

Comment 5.1. These results contribute to recent results on estimation of the ATE and its
variants21 in Cattaneo (2010), who considers this problem in a series framework where the
number of series terms obeys p2/n→0, and in Rothe and Firpo (2013), who provide results based
on kernel estimators. These approaches are very useful but do not target “data-rich-environments”
and do not study uniformity. Our framework allows for consideration of a large number of series
terms, potentially much larger than the sample size, but requires that a relatively small number of
these terms are needed through the sparsity condition s2Kn(log(p∨n))2/n→0. Our framework
also covers semi-parametric models with a large number of raw regressors xij as long as |xij|�Kn
where Kn does not grow too quickly. Finally, we establish validity of our inferential results
uniformly in P. We also refer the reader to the independent work by Farrell (2013), who develops
group-Lasso methods for estimating ATE in the heterogeneous effects framework. ‖

6. EMPIRICAL EXAMPLE: ESTIMATING THE EFFECT OF ABORTION ON CRIME

In the preceding sections, we have provided results demonstrating how variable selection methods,
focusing on the case of Lasso-based methods, can be used to estimate treatment effects in
models in which we believe the variable of interest is exogenous conditional on observables.
We further illustrate the use of these methods in this section by reexamining Donohue III and
Levitt’s (2001) study of the impact of abortion on crime rates. In the following, we briefly review
Donohue III and Levitt (2001) and then present estimates obtained using the methods developed
in this article.

Donohue III and Levitt (2001) discuss two key arguments for a causal channel relating
abortion to crime. The first is simply that more abortion among a cohort results in an otherwise
smaller cohort and so crime 15–25 years later, when this cohort is in the period when its members
are most at risk for committing crimes, will be otherwise lower given the smaller cohort size.
The second argument is that abortion gives women more control over the timing of their fertility
allowing them to more easily assure that childbirth occurs at a time when a more favourable
environment is available during a child’s life. For example, access to abortion may make it easier
to ensure that a child is born at a time when the family environment is stable, the mother is more
well educated, or household income is stable. This second channel would mean that more access
to abortion could lead to lower crime rates even if fertility rates remained constant.

The basic problem in estimating the causal impact of abortion on crime is that state-level
abortion rates are not randomly assigned, and it seems likely that there will be factors that are
associated to both abortion rates and crime rates. It is clear that any association between the
current abortion rate and the current crime rate is likely to be spurious. However, even if one
looks at say the relationship between the abortion rate 18 years in the past and the crime rate
among current 18 year olds, the lack of random assignment makes establishing a causal link
difficult without adequate controls. An obvious confounding factor is the existence of persistent
state-to-state differences in policies, attitudes, and demographics that are likely related to overall
state level abortion and crime rates. It is also important to control flexibly for aggregate trends.
For example, it could be the case that national crime rates were falling over some period while
national abortion rates were rising but that these trends were driven by completely different
factors. Without controlling for these trends, one would mistakenly associate the reduction in

21. Further results can be found in Belloni et al. (2013).
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crime to the increase in abortion. In addition to these overall differences across states and times,
there are other time varying characteristics such as state-level income, policing, or drug-use to
name a few that could be associated with current crime and past abortion.

To address these confounds, Donohue III and Levitt (2001) estimate a model for state-level
crime rates running from 1985 to 1997 in which they condition on a number of these factors.
Their basic specification is

ycit=αcacit+w′itβc+δci+γct+εcit (6.45)

where i indexes states, t indexes times, c∈{violent, property, murder} indexes type of crime, δci
are state-specific effects that control for any time-invariant state-specific characteristics, γct are
time-specific effects that control flexibly for any aggregate trends, wit are a set of control variables
to control for time-varying confounding state-level factors, acit is a measure of the abortion rate
relevant for type of crime c,22 and ycit is the crime-rate for crime type c. Donohue III and Levitt
(2001) use the log of lagged prisoners per capita, the log of lagged police per capita, the
unemployment rate, per-capita income, the poverty rate,AFDC generosity at time t−15, a dummy
for concealed weapons law, and beer consumption per capita for wit , the set of time-varying state-
specific controls. Tables IV and V in Donohue III and Levitt (2001) present baseline estimation
results based on (6.45) as well as results from different models which vary the sample and set of
controls to show that the baseline estimates are robust to small deviations from (6.45). We refer the
reader to the original paper for additional details, data definitions, and institutional background.

For our analysis, we take the argument that the abortion rates defined above may be
taken as exogenous relative to crime rates once observables have been conditioned on from
Donohue III and Levitt (2001) as given. Given the seemingly obvious importance of controlling
for state and time effects, we account for these in all models we estimate. We choose to eliminate
the state effects via differencing rather than including a full set of state dummies but include a
full set of time dummies in every model.23 Thus, we will estimate models of the form

ycit−ycit−1=αc(acit−acit−1)+z′citκc+gct+ηcit . (6.46)

where gct are time effects. We use the same state-level data as Donohue III and Levitt (2001)
but delete Alaska, Hawaii, and Washington, D.C. which gives a sample with 48 cross-sectional
observations and 12 time series observations for a total of 576 observations. With these deletions,
our baseline estimates using the same controls as in (6.45) are quite similar to those reported
in Donohue III and Levitt (2001). Baseline estimates from Table IV of Donohue III and Levitt
(2001) and our baseline estimates based on the differenced version of (6.45) are given in the first
and second row of Table 2, respectively.

22. This variable is constructed as weighted average of abortion rates where weights are determined by the fraction
of the type of crime committed by various age groups. For example, if 60% of violent crime were committed by 18-year
olds and 40% were committed by 19-year olds in state i, the abortion rate for violent crime at time t in state i would be
constructed as 0.6 times the abortion rate in state i at time t−18 plus 0.4 times the abortion rate in state i at time t−19.
See Donohue III and Levitt (2001) for further detail and exact construction methods.

23. Part of the motivation for considering first-differences is that our theoretical results are for independent data.
For both violent crime and property crime, this assumption seems like a better approximation in differences than in levels.
The first three estimated autocorrelations of the first-difference residuals from the baseline specification using only the
controls from Donohue III and Levitt (2001) based on violent crime, property crime, and murder are respectively (0.0155,
0.0574,−0.0487), (−0.0736, 0.0651, 0.0540), and (−0.3954,−0.0813, 0.0066). Discussion of results obtained estimating
the model in levels and using fixed effects are available in a Supplementary Appendix. Extending the formal results to
accommodate dependence would be a useful extension for future work.
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TABLE 2
Estimated Effects of Abortion on Crime Rates

Violent crime Property crime Murder

Effect Std. Err. Effect Std. Err. Effect Std. Err.

A. Donohue III and Levitt (2001) Table IV
Donohue III and Levitt (2001) Table IV −0.129 0.024 −0.091 0.018 −0.121 0.047
First-difference −0.152 0.034 −0.108 0.022 −0.204 0.068
All controls 0.014 0.719 −0.195 0.225 2.343 2.798
Post-double-selection −0.104 0.107 −0.030 0.055 −0.125 0.151
Post-double-selection+ −0.082 0.106 −0.031 0.057 −0.068 0.200

Note: The table displays the estimated coefficient on the abortion rate, “Effect”, and its estimated standard error. Numbers
in the first row are taken from Donohue III and Levitt (2001) Table IV, columns (2), (4), and (6). The remaining rows
are estimated by first differences, include a full set of time dummies, and use standard errors clustered at the state-level.
Estimates in the row labelled “First-Difference” are obtained using the same controls as in the first row. Estimates in
the row labelled “All Controls” use 284 control variables as discussed in the text. Estimates in the row “Post-Double-
Selection” use the variable selection technique developed in this article to search among the set of 284 potential controls.
Estimates in the row “Post-Double-Selection+” use the variables selected by the procedure of this article augmented with
the set of variables from Donohue III and Levitt (2001).

Our main point of departure from Donohue III and Levitt (2001) is that we allow for a much
richer set zcit than allowed for in wit in model (6.45). Our zcit includes higher order terms and
interactions of the control variables defined above. In addition, we put initial conditions and initial
differences of wit and acit and within-state averages of wit into our vector of controls zcit . This
addition allows for the possibility that there may be some feature of a state that is associated both
with its growth rate in abortion and its growth rate in crime. For example, having an initially high-
levels of abortion could be associated with having high-growth rates in abortion and low-growth
rates in crime. Failure to control for this factor could then lead to misattributing the effect of
this initial factor, perhaps driven by policy or state-level demographics, to the effect of abortion.
Finally, we allow for more general trends by allowing for an aggregate quadratic trend in zcit as
well as interactions of this quadratic trend with control variables. This gives us a set of 284 control
variables to select among in addition to the 12 time effects that we include in every model.24

Note that interpreting estimates of the effect of abortion from model (6.45) as causal relies
on the belief that there are no higher order terms of the control variables, no interaction terms,
and no additional excluded variables that are associated both to crime rates and the associated
abortion rate. Thus, controlling for a large set of variables as described above is desirable from
the standpoint of making this belief more plausible. At the same time, naively controlling lessens
our ability to identify the effect of interest and thus tends to make estimates far less precise.
The effect of estimating the abortion effect conditioning on the full set of 284 potential controls
described above is given in the third row of Table 2. As expected, all coefficients are estimated
very imprecisely. Of course, very few researchers would consider using 284 controls with only
576 observations due to exactly this issue.

We are faced with a tradeoff between controlling for very few variables which may leave
us wondering whether we have included sufficient controls for the exogeneity of the treatment
and controlling for so many variables that we are essentially mechanically unable to learn about
the effect of the treatment. The variable selection methods developed in this article offer one
resolution to this tension. The assumed sparse structure maintains that there is a small enough set

24. The exact identities of the 284 potential controls is available upon request. It consists of linear and quadratic
terms of each continuous variable in wit , interactions of every variable in wit , initial levels and initial differences of wit

and acit , the within-state averages of wit , and interactions of these variables with a quadratic trend.
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of variables that one could potentially learn about the treatment, but does add substantial flexibility
to the usual case, where a researcher considers only a few control variables, by allowing this set to
be found by the data from among a large set of controls. Thus, the approach should complement
the usual careful specification analysis by providing a researcher an efficient, data-driven way to
search for a small set of influential confounds from among a sensibly chosen broad set of potential
confounding variables.

In the abortion example, we use the post-double-selection estimator defined in Section 2.2 for
each of our dependent variables.25 For violent crime, eight variables are selected in the abortion
equation,26 and no variables are selected in the crime equation. For property crime, nine variables
are selected in the abortion equation,27 and three are selected in the crime equation.28 For murder,
nine variables are selected in the abortion equation,29 and none were selected in the crime equation.

Estimates of the causal effect of abortion on crime obtained by searching for confounding
factors among our set of 284 potential controls are given in the fourth row of Table 2. Each of
these estimates is obtained from the least squares regression of the crime rate on the abortion rate
and the eight, twelve, and nine controls selected by the double-post-Lasso procedure for violent
crime, property crime, and murder respectively. All of these estimates for the effect of abortion
on crime rates are quite imprecise, producing 95% confidence intervals that encompass large
positive and negative values. Note that the post-double-Lasso produces models that are not of
vastly different size than the “intuitive” model (6.45). As a final check, we also report results that
include all of the original variables from (6.45) in the amelioration set in the fifth row of the table.
These results show that the conclusions made from using only the variable selection procedure
do not qualitatively change when the variables used in the original Donohue III and Levitt (2001)
are added to the equation. For a quick benchmark relative to the simulation examples, we note
that the R2 obtained by regressing the crime rate on the selected variables are 0.0251, 0.1179, and
0.0039 for violent crime, property crime, and the murder rate respectively and that the R2’s from
regressing the abortion rate on the selected variables are 0.8420, 0.6116, and 0.7781 for violent
crime, property crime, and the murder rate respectively. These values correspond to regions of
the R2 space considered in the simulation where the double selection procedure substantially
outperformed simple post-single selection procedures.

It is interesting that one would draw qualitatively different conclusions from the estimates
obtained using formal variable selection than from the estimates obtained using a small set of

25. Implementation requires selection of a penalty parameter and loadings. We estimate the loadings using the
iterative procedure proposed in Belloni et al. (2012) with 100 as the maximum number of iterations. For each model, the
iterative procedure converges after 21 or fewer iterations. We set the penalty parameter according to (2.12) with c=1.1
and γ =0.05.

26. The selected variables are lagged prisoners per capita, the lagged unemployment rate, the initial change in
beer consumption interacted with a linear trend, the initial change in income squared interacted with a linear trend, the
within-state mean of income, the within-state mean of lagged prisoners per capita interacted with a linear trend, the
within-state mean of income interacted with a linear trend, and the initial level of the abortion rate.

27. The selected variables are lagged prisoners per capita, lagged income, the initial change in income, the initial
level of income, the initial change in beer consumption interacted with a linear trend, the initial change of income squared
interacted with a linear trend, the within-state average of income, the within-state average of income interacted with a
linear trend, and the initial level of abortion.

28. The three variables are the initial level income squared interacted with a linear trend, the within-state average
of AFDC generosity, and the within-state average of AFDC generosity squared.

29. The selected variables are lagged prisoners per capita, lagged unemployment, the initial change in unemployment
squared, the initial level of prisoners per capita interacted with a linear trend, the initial change in beer consumption
interacted with t2, the within-state average of the number of prisoners per capita interacted with a linear trend, the within-
state average of income interacted with a linear trend, the initial level of the abortion rate, and the initial level of the
abortion rate interacted with a linear trend.
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intuitively selected controls. Looking at the set of selected control variables, we see that initial
conditions and interactions with trends are selected across all dependent variables. We also see that
we cannot precisely determine the effect of the abortion rate on crime rates once one accounts
for these initial conditions. Of course, this does not mean that the effects of the abortion rate
provided in the first two rows of Table 2 are not representative of the true causal effects. It does,
however, imply that this conclusion is strongly predicated on the belief that there are not other
unobserved state-level factors that are correlated to both initial values of the controls and abortion
rates, abortion rate changes, and crime rate changes. Interestingly, a similar conclusion is given
in Foote and Goetz (2008) based on an intuitive argument.

We believe that the example in this section illustrates how one may use modern variable
selection techniques to complement causal analysis in economics. In the abortion example, we
are able to search among a large set of controls and transformations of variables when trying to
estimate the effect of abortion on crime. Considering a large set of controls makes the underlying
assumption of exogeneity of the abortion rate conditional on observables more plausible, while
the methods we develop allow us to produce an end-model which is of manageable dimension.
Interestingly, we see that one would draw quite different conclusions from the estimates obtained
using formal variable selection. Looking at the variables selected, we can also see that this change
in interpretation is being driven by the variable selection method’s selecting different variables,
specifically initial values of the abortion rate and controls, than are usually considered. Thus,
it appears that the usual interpretation hinges on the prior belief that initial values should be
excluded from the structural equation for the differences.

APPENDIX A. ITERATED LASSO ESTIMATION

Feasible implementation of Lasso under heteroscedasticity requires a choice of penalty parameter λ and estimation of
penalty loadings (2.12). λ depends only on the known p and n and the researcher specified c and γ . In all examples, we
use c=1.1 and γ =0.05. In this appendix, we state algorithms for estimating the penalty loadings.

Let I0 be an initial set of regressors with a bounded number of elements, including for example the intercept.
Let β̄(I0) be the least squares estimator of the coefficients on the covariates associated with I0, and define l̂jI0 :=√

En[x2
ij(yi−x′i β̄(I0))2].

An algorithm for estimating the penalty loadings using Post-Lasso is as follows:

Algorithm 1. (Estimation of Lasso loadings using Post-Lasso iterations). Set l̂j,0 := l̂jI0 , j=1,...,p. Set k=0, and
specify a small constant ν�0 as a tolerance level and a constant K>1 as an upper bound on the number of
iterations. (1) Compute the Post-Lasso estimator β̃ based on the loadings l̂j,k . (2) For ŝ=‖β̃‖0=|T̂ | set lj,k+1 :=√

En[x2
ij(yi−x′i β̃)2]√n/(n− ŝ). (3) If max1�j�p |̂lj,k −̂ lj,k+1|�ν or k>K, set the loadings to l̂j,k+1, j=1,...,p and stop;

otherwise, set k←k+1 and go to (1).

APPENDIX B. AUXILIARY RESULTS ON MODEL SELECTION VIA LASSO AND
POST-LASSO

The post-double-selection estimator applies the least squares estimator to the union of variables selected for equations
(2.6) and (2.7) via feasible Lasso. Therefore, the model selection properties of feasible Lasso as well as properties of least
squares estimates for m and g based on the selected model play an important role in the derivation of the main result. The
purpose of this appendix is to describe these properties.

Note that each of the regression models (2.6)-(2.7) obeys the following conditions.

Condition ASM: Approximate Sparse Model. We observe ωi= (ỹi,z̃i), i=1,...,n, where {ωi}∞i=1 are i.n.i.d. vectors on
the probability space (�,F ,Pn), and we have that x̃i=P(z̃i) for 1� i�n, where P(zi) is a p-dimensional dictionary of
transformations of zi, which may depend on n. These vectors that obey the following approximately sparse regression
model for each n:

ỹi= f (z̃i)+εi= x̃′iβ0+ri+εi, E[εi | x̃i]=0, Ē[ε2
i ]=σ 2, ‖β0‖0�s, Ē[r2

i ]�σ 2s/n.
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Let T̂ denote the model selected by the feasible Lasso estimator β̂:

T̂=support(β̂)={j∈{1,...,p} : |β̂j|>0}.
The Post-Lasso estimator β̃ is ordinary least squares applied to the data after removing the regressors that were not
selected by the feasible Lasso:

β̃∈arg min
β∈Rp

En[(ỹi− x̃′iβ)2] : βj=0 for each j /∈ T̂ . (B.1)

The following conditions are imposed to deal with non-Gaussian, heteroscedastic errors.

Condition RF: Reduced Form. In addition to ASM, we have

(i) log3 p/n→0 and slog(p∨n)/n→0,

(ii) Ē[ỹ2
i ]+max1�j�p{Ē[x̃2

ij ỹ
2
i ]+Ē[|x̃3

ijε
3
i |]+1/Ē[x̃2

ijε
2
i ]}�1,

(iii) max
1�j�p

{|(En−Ē)[x̃2
ijε

2
i ]|+|(En−Ē)[x̃2

ij ỹ
2
i ]|}+ max

1�i�n
‖x̃i‖2∞

slog(n∨p)

n
=oP(1).

The main auxiliary result that we use in proving the main result is as follows.

Lemma 1. (Model Selection Properties of Lasso and Properties of Post-Lasso). Let {Pn} be a sequence of data-
generating processes. Suppose that conditions ASM and RF hold, and that Condition SE (Pn) holds for En[x̃i x̃′i]. Consider
a feasible Lasso estimator with penalty level and loadings specified as in Section 3.3.

(i) Then the data-dependent model T̂ selected by a feasible Lasso estimator satisfies with probability approaching 1:

ŝ=|T̂ |�s and min
β∈Rp : βj=0 ∀j �∈T̂

√
En[f (z̃i)− x̃′iβ]2�σ

√
slog(p∨n)

n
. (B.2)

(ii) The Post-Lasso estimator obeys√
En[f (z̃i)− x̃′i β̃]2�P σ

√
slog(p∨n)

n
, ‖β̃−β0‖�P

√
En[{x̃′i β̃− x̃′iβ0}2]�P σ

√
slog(p∨n)

n
.

Lemma 1 was derived in Belloni et al. (2012) for Iterated Lasso and by Belloni et al. (2010) for Square-root Lasso.
These analyses build on the rate analysis of infeasible Lasso by Bickel et al. (2009) and on sparsity analysis and rate
analysis of Post-Lasso by Belloni and Chernozhukov (2013).

APPENDIX C. PROOF OF THEOREM 1

The proof proceeds under given sequence of probability measures {Pn}, as n→∞.
Let Y=[y1,...,yn]′, X=[x1,...,xn]′, D=[d1,...,dn]′, V=[v1,...,vn]′, ζ =[ζ1,...,ζn]′, m=[m1,...,mn]′, Rm=

[rm1,...,rmn]′, g=[g1,...,gn]′, Rg=[rg1,...,rgn]′, and so on. For A⊂{1,...,p}, let X[A]={Xj,j∈A}, where {Xj,j=1,...,p}
are the columns of X. Let

PA=X[A](X[A]′X[A])−X[A]′
be the projection operator sending vectors in R

n onto span[X[A]], and let MA= In−PA be the projection onto the
subspace that is orthogonal to span[X[A]]. For a vector W ∈R

n, let

β̃W (A) :=arg min
b∈Rp
‖W−Xb‖2 : bj=0, ∀j �∈A,

be the coefficient of linear projection of W onto span[X[A]]. If A=∅, interpret PA=0n, and β̃W =0p.
Finally, denote φmin(m)=φmin(m)[En[xix′i]] and φmax(m)=φmax(m)[En[xix′i]].
Step 1.(Main) Write α̌=[D′MÎ D/n

]−1 [D′MÎ Y/n] so that

√
n(α̌−α0)=[D′MÎ D/n

]−1 [D′MÎ (g+ζ )/
√

n]=: ii−1 ·i.
By Steps 2 and 3, ii=V ′V/n+oP(1) and i=V ′ζ/

√
n+oP(1). Next note that V ′V/n=E[V ′V/n]+oP(1) by Chebyshev

inequality, and because E[V ′V/n] is bounded away from zero and from above uniformly in n by Condition SM, we have
ii−1=E[V ′V/n]−1+oP(1).
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By Condition SM we have σ 2
n = Ē[v2

i ]−1Ē[ζ 2
i v2

i ]Ē[v2
i ]−1 is bounded away from zero and from above, uniformly

in n. Hence

Zn=σ−1
n

√
n(α̌−α0)=n−1/2

n∑
i=1

zi,n+oP(1),

where zi,n :=σ−1
n Ē[v2

i ]−1viζi are i.n.i.d. with mean zero. For δ>0 such that 4+2δ�q

Ē|zi,n|2+δ� Ē
[
|vi|2+δ |ζi|2+δ

]
�
√

Ē|vi|4+2δ
√

Ē|ζi|4+2δ�1,

by Condition SM. This condition verifies the Lyapunov condition and thus application of the Lyapunov CLT for i.n.i.d.
triangular arrays implies that Zn�N(0,1).

Step 2. (Behavior of i.) Decompose, using D=m+V ,

i=V ′ζ/
√

n+m′MÎ g/
√

n
=:ia

+m′MÎζ/
√

n
=:ib

+V ′MÎ g/
√

n
=:ic

−V ′P̂Iζ/
√

n
=:id

.

First, by Step 5 and 6 below we have

|ia|=|m′MÎ g/
√

n|�√n‖MÎ g/
√

n‖‖MÎ m/
√

n‖�P

√
[slog(p∨n)]2/n=o(1),

where the last bound follows from the assumed growth condition s2 log2(p∨n)=o(n).
Second, using that m=Xβm0+Rm and m′MÎζ =R′mζ−(β̃m (̂I)−βm0)′X ′ζ , conclude

|ib|� |R′mζ/
√

n|+|(β̃m (̂I)−βm0)′X ′ζ/
√

n|�P

√
[slog(p∨n)]2/n=oP(1).

This follows since |R′mζ/
√

n|�P
√

R′mRm/n�P
√

s/n, holding by Chebyshev inequality and Conditions SM and
ASTE(iii), and

|(β̃m (̂I)−βm0)′X ′ζ/
√

n|�‖β̃m (̂I)−βm0‖1‖X ′ζ/
√

n‖∞�P

√
[s2 log(p∨n)]/n√log(p∨n).

The latter bound follows by (a)

‖β̃m (̂I)−βm0‖1�
√̂

s+s‖β̃m (̂I)−βm0‖�P

√
[s2 log(p∨n)]/n

holding by Step 5 and by ŝ�P s implied by Lemma 1, and (b) by ‖X ′ζ/√n‖∞�P
√

log(p∨n) holding by Step 4 under
Condition SM.

Third, using similar reasoning, decomposition g=Xβg0+Rg, and Steps 4 and 6, conclude

|ic|� |R′gV/
√

n|+|(β̃g (̂I)−βg0)′X ′V/
√

n|�P

√
[slog(p∨n)]2/n=oP(1).

Fourth, we have

|id |� |β̃V (̂I)′X ′ζ/
√

n|�‖β̃V (̂I)‖1‖X ′ζ/
√

n‖∞�P

√
[slog(p∨n)]2/n=oP(1),

since by Step 4 below ‖X ′ζ/√n‖∞�P
√

log(p∨n), and

‖β̃V (̂I)‖1 �
√̂

s‖β̃V (̂I)‖�√̂s‖(X [̂I]′X [̂I]/n)−1X [̂I]′V/n‖
�
√̂

sφ−1
min (̂s)

√̂
s‖X ′V/√n‖∞/

√
n�P s

√[log(p∨n)]/n.
The latter bound follows from ŝ�P s, holding by Lemma 1, so that φ−1

min (̂s)�P 1 by Condition SE, and from

‖X ′V/√n‖∞�P
√

log(p∨n) holding by Step 4.
Step 3. (Behaviour of ii.) Decompose

ii= (m+V )′MÎ (m+V )/n=V ′V/n+m′MÎ m/n
=:iia

+2m′MÎ V/n
=:iib

−V ′P̂I V/n
=:iic

.

Then |iia|�P [slog(p∨n)]/n=oP(1) by Step 5, |iib|�P [slog(p∨n)]/n=oP(1) by reasoning similar to deriving the bound
for |ib|, and |iic|�P [slog(p∨n)]/n=oP(1) by reasoning similar to deriving the bound for |id |.

Step 4. (Auxiliary: Bounds on ‖X ′ζ/√n‖∞ and ‖X ′V/√n‖∞) Here we show that

(a) ‖X ′ζ/√n‖∞�P

√
log(p∨n) and (b)‖X ′V/√n‖∞�P

√
log(p∨n).

To show (a), we use Lemma 3 stated in Appendix G on the tail bound for self-normalized deviations to deduce the bound.
Indeed, we have that wp→1 for some �n→∞ but so slowly that 1/γ =�n� logn, with probability 1−o(1)

max
1�j�p

∣∣∣∣∣∣∣
n−1/2∑n

i=1 xijζi√
En[x2

ijζ
2
i ]

∣∣∣∣∣∣∣��−1
(

1− 1

2�np

)
�
√

2log(2�np)�
√

log(p∨n). (C.3)
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By Lemma 3 the first inequality in (C.3) holds, provided that for all n sufficiently large the following holds,

�−1
(

1− 1

2�np

)
� n1/6

�n
min

1�j�p
M2

j −1, Mj :=
Ē[x2

ijζ
2
i ]1/2

Ē[|x3
ij||ζ 3

i |]1/3
.

Since we can choose �n to grow as slowly as needed, a sufficient condition for this are the conditions: logp=
o(n1/3) and min1�j�p Mj�1, which both hold by Condition SM. Finally,

max
1�j�p

En[x2
ijζ

2
i ]�P 1, (C.4)

by Condition SM. Therefore (a) follows from the bounds (C.3) and (C.4). Claim (b) follows similarly.
Step 5. (Auxiliary: Bound on ‖MÎ m‖ and related quantities.) This step shows that

(a) ‖MÎ m/
√

n‖�P

√[slog(p∨n)]/n and (b) ‖β̃m (̂I)−βm0‖�P

√[slog(p∨n)]/n.
Observe that √[slog(p∨n)]/n�P

(1)
‖MÎ1

m/
√

n‖�P
(2)
‖MÎ m/

√
n‖

where inequality (1) holds since by Lemma 1 ‖MÎ1
m/
√

n‖�‖(Xβ̃D (̂I1)−m)/
√

n‖�P
√[slog(p∨n)]/n, and (2) holds

by Î1⊆ Î by construction. This shows claim (a). To show claim (b) note that

‖MÎ m/
√

n‖�
(3)
|‖X(β̃m (̂I)−βm0)/

√
n‖−‖Rm/

√
n‖|

where (3) holds by the triangle inequality. Since ‖Rm/
√

n‖�P
√

s/n by Chebyshev and Condition ASTE(iii), conclude
that √[slog(p∨n)]/n �P ‖X(β̃m (̂I)−βm0)/

√
n‖

�
√
φmin(̂s+s)‖β̃m (̂I)−βm0‖�P ‖β̃m (̂I)−βm0‖,

since ŝ�P s by Lemma 1 so that 1/φmin(̂s+s)�P 1 by condition SE. This shows claim (b).
Step 6. (Auxiliary: Bound on ‖MÎ g‖ and related quantities.) This step shows that

(a) ‖MÎ g/
√

n‖�P

√[slog(p∨n)]/n and (b) ‖β̃g (̂I)−βg0‖�P

√[slog(p∨n)]/n.
Observe that √[slog(p∨n)]/n �P

(1)
‖MÎ2

(α0m+g)/
√

n‖�P
(2)
‖MÎ (α0m+g)/

√
n‖

�P
(3)
|‖MÎ g/

√
n‖−‖MÎα0m/

√
n‖|

where inequality (1) holds since by Lemma 1 ‖MÎ2
(α0m+g)/

√
n‖�‖(Xβ̃Y (̂I2)−α0m−g)/

√
n‖�P

√[slog(p∨n)]/n,

(2) holds by Î2⊆ Î , and (3) by the triangle inequality. Since |α0| is bounded uniformly in n by assumption, by Step 5,
‖MÎα0m/

√
n‖�P

√[slog(p∨n)]/n. Hence claim (a) follows by the triangle inequality:√[slog(p∨n)]/n�P ‖MÎ g/
√

n‖
To show claim (b) we note that ‖MÎ g/

√
n‖� |‖X(β̃g (̂I)−βg0)/

√
n‖−‖Rg/

√
n‖|, where ‖Rg/

√
n‖�P

√
s/n by

Condition ASTE(iii). Then conclude similarly to Step 5 that√[slog(p∨n)]/n �P ‖X(β̃g (̂I)−βg0)/
√

n‖�√φmin(̂s+s)‖β̃g (̂I)−βg0‖�P ‖β̃g (̂I)−βg0‖.
Step 7. (Variance Estimation.) Since ŝ�P s=o(n), (n− ŝ−1)/n=oP(1), and since Ē[v2

i ζ
2
i ] and Ē[v2

i ] are bounded
away from zero and from above uniformly in n by Condition SM, it suffices to show that En [̂v2

i ζ̂
2
i ]−Ē[v2

i ζ
2
i ]→P

0, En [̂v2
i ]−Ē[v2

i ]→P 0, The second relation was shown in Step 3, so it remains to show the first relation.
Let ṽi=vi+rmi and ζ̃i=ζi+rgi. Recall that by Condition ASTE(v) we have Ē[ṽ2

i ζ̃
2
i ]−Ē[v2

i ζ
2
i ]→0, and

En[ṽ2
i ζ̃

2
i ]−Ē[ṽ2

i ζ̃
2
i ]→P 0 by Vonbahr–Esseen’s inequality in von Bahr and Esseen (1965) since Ē[|ṽi ζ̃i|2+δ]�

(Ē[|ṽi|4+2δ]Ē[|ζ̃i|4+2δ])1/2 is uniformly bounded for 4+2δ�q. Thus it suffices to show that En [̂v2
i ζ̂

2
i ]−En[ṽ2

i ζ̃
2
i ]→P 0.

By the triangle inequality

|En [̂v2
i ζ̂

2
i − ṽ2

i ζ̃
2
i ]|� |En[(̂v2

i − ṽ2
i )ζ̃ 2

i ]|=:iv
+|En [̂v2

i (̂ζ 2
i − ζ̃ 2

i )]|
=:iii

.

Then, expanding ζ̂ 2
i − ζ̃ 2

i we have

iii � 2En[{di(α0−α̌)}2̂v2
i ]+2En[{x′i(β̌−βg0)}2̂v2

i ]+|2En[ζ̃idi(α0−α̌)̂v2
i ]|+|2En[ζ̃ix

′
i(β̌−βg0)̂v2

i ]|
=: iiia+iiib+iiic+iiid=oP(1)

where the last bound follows by the relations derived below.
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First, we note

iiia � 2max
i�n

d2
i |α0−α̌|2En [̂v2

i ]�P n(2/q)−1=o(1) (C.5)

iiic � 2max
i�n
{|ζ̃i||di|}En [̂v2

i ]|α0−α̌|�P n(2/q)−(1/2)=o(1) (C.6)

which holds by the following argument. Condition SM assumes that E[|di|q] which in turn implies that E[maxi�n d2
i ]�

n2/q. Similarly Condition ASTE implies that E[maxi�n ζ̃
2
i ]�n2/q and E[maxi�n ṽ2

i ]�n2/q. Thus by Markov inequality

max
i�n
|di|+|ζ̃i|+|ṽi|�P n1/q. (C.7)

Moreover, En [̂v2
i ]�P 1 and |α̌−α0|�P n−1/2 by the previous steps. These bounds and q>4 imposed in Condition SM

imply (C.5)-(C.6).
Next we bound,

iiid � 2max
i�n
|ζ̃i|max

i�n
|x′i(β̌−βg0)|En [̂v2

i ]�P n1/q max
i�n
‖xi‖∞

√
s√
n

slog(p∨n)√
n

=oP(1). (C.8)

To establish this we use (C.7) and that for T̂g=support(βg0)∪ Î , maxi�n{x′i(β̌−βg0)}2�maxi�n‖xiT̂g
‖2‖β̌−βg0‖2,where

maxi�n‖xiT̂g
‖2� |T̂g|maxi�n‖xi‖2∞�P smaxi�n‖xi‖2∞ by the sparsity assumption in ASTE and the sparsity bound in

Lemma 1. Since β̌ [̂I]= (X [̂I]′X [̂I])−X [̂I]′(ζ+g−(α̌−α0)D) ,

‖β̌−βg0‖�‖β̃g (̂I)−βg0‖+‖β̃ζ (̂I)‖+|α̌−α0|·‖β̃D (̂I)‖�P

√
slog(p∨n)/n.

The last inequality follows by Step 6(b), by ‖β̃ζ (̂I)‖�√̂sφ−1
min (̂s)‖X ′ζ/n‖∞�P

√
slog(p∨n)/n holding by Condition SE

and by ŝ�P s from Lemma 1, and by Step 4, |α̌−α0|�P 1/
√

n by Step 1, and ‖β̃D (̂I)‖�φ−1
min (̂s)

√̂
smax1�j�p |En[xijdi]|�

φ−1
min (̂s)

√̂
smax1�j�p

√
En[x2

ijd
2
i ]�P

√
s by Condition SE, ŝ�P s by the sparsity bound in Lemma 1, and Condition SM.

The final conclusion in (C.8) then follows by condition ASTE (iv) and (v).
Next, using the relations above and condition ASTE (iv) and (v), we also conclude that

iiib � 2max
i�n
{x′i(β̌−βg0)}2En [̂v2

i ]�P max
i�n
‖xi‖2∞

s√
n

slog(p∨n)√
n

=oP(1).

Finally, the argument for iv=oP(1) follows similarly to the argument for iii=oP(1) and the result follows. ‖

APPENDIX D. PROOF OF COROLLARY 1

Let Pn be a collection of probability measures P for which conditions ASTE (P), SM (P), SE (P), and R (P) hold for the
given n. Consider any sequence {Pn}, with index n∈{1,2,...}, with Pn∈Pn for each n∈{1,2,...}. By Theorem 1 we have
that, for c=�−1(1−γ /2), limn→∞Pn

(
α0∈[α̌±cσ̂n/

√
n])=�(c)−�(−c)=1−γ. This means that for every further

subsequence {Pnk } with Pnk ∈Pnk for each k∈{1,2,...}
lim

k→∞Pnk

(
α0∈[α̌±cσ̂nk /

√
nk]
)=1−γ. (D.9)

Suppose that limsupn→∞ supP∈Pn

∣∣∣P(α0∈[α̌±cσ̂n/
√

n])−(1−γ )
∣∣∣>0. Hence there is a subsequence {Pnk } with

Pnk ∈Pnk for each k∈{1,2,...} such that: limk→∞Pnk

(
α0∈[α̌±cσ̂nk /

√
nk]
) �=1−γ. This gives a contradiction to (D.9).

It then follows that
lim

n→∞ sup
P∈Pn

|P(α0∈[α̌±c(1−ξ )̂σn/
√

n])−(1−ξ )|=0.

The claim then follows from this since P⊆Pn for all n�n0. ‖

APPENDIX E. PROOF OF THEOREM 2

We use the same notation as in Theorem 1. Using that notation the approximations bounds stated in Condition HLMS
are equivalent to ‖MÎ g‖�δnn1/4 and ‖MÎ m‖�δnn1/4.
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Step 1. It follows the same reasoning as Step 1 in the proof of Theorem 1.
Step 2. (Behavior of i.) Decompose, using D=m+V

i=V ′ζ/
√

n+m′MÎ g/
√

n
=:ia

+m′MÎζ/
√

n
=:ib

+V ′MÎ g/
√

n
=:ic

−V ′P̂Iζ/
√

n
=:id

.

First, by Condition HLMS we have ‖MÎ g‖=oP(n1/4) and ‖MÎ m‖=oP(n1/4). Therefore

|ia|=|m′MÎ g/
√

n|�√n‖MÎ g/
√

n‖‖MÎ m/
√

n‖�P o(1).

Second, using that m=Xβm0+Rm and m′MÎζ =R′mζ−(β̃m (̂I)−βm0)′X ′ζ , we have

|ib| � |R′mζ/
√

n|+|(β̃m (̂I)−βm0)′X ′ζ/
√

n|� |R′mζ/
√

n|+‖β̃m (̂I)−βm0‖1‖X ′ζ/√n‖∞
�P
√

s/n+√s {o(n−1/4)+√s/n}√log(p∨n)=o(1).

This follows because |R′mζ/
√

n|�P
√

R′mRm/n�P
√

s/n, by Chebyshev inequality and Conditions SM and ASTE(iii),

‖β̃m (̂I)−βm0‖1�
√̂

s+s‖β̃m (̂I)−βm0‖�P
√

s {o(n−1/4)+√s/n},
by Step 4 and ŝ=|̂I|�P s by Condition HLMS, and ‖X ′ζ/√n‖∞�P

√
log(p∨n) holding by Step 4 in the proof of

Theorem 1.
Third, using similar reasoning and the decomposition g=Xβg0+Rg conclude

|ic| � |R′gV/
√

n|+|(β̃g (̂I)−βg0)′X ′V/
√

n|
�P

√
s/n+√s {o(n−1/4)+√s/n} √log(p∨n)=oP(1).

Fourth, we have

|id |� |β̃V (̂I)′X ′ζ/
√

n|�‖β̃V (̂I)‖1‖X ′ζ/
√

n‖∞�P

√
[slog(p∨n)]2/n=oP(1),

since ‖X ′ζ/√n‖∞�P
√

log(p∨n) by Step 4 of the proof of Theorem 1, and

‖β̃V (̂I)‖1 �
√̂

s‖β̃V (̂I)‖�√̂s‖(X [̂I]′X [̂I]/n)−1X [̂I]′V/n‖
�
√̂

sφ−1
min (̂s)

√̂
s‖X ′V/√n‖∞/√n�P s

√[log(p∨n)]/n.
The latter bound follows from ŝ�P s by condition HLMS so that φ−1

min (̂s)�P 1 by condition SE, and again invoking Step 4

of the proof of Theorem 1 to establish ‖X ′V/√n‖∞�P
√

log(p∨n).
Step 3. (Behaviour of ii.) Decompose

ii= (m+V )′MÎ (m+V )/n=V ′V/n+m′MÎ m/n
=:iia

+2m′MÎ V/n
=:iib

−V ′P̂I V/n
=:iic

.

Then |iia|�P o(n1/2)/n=oP(n−1/2) by condition HLMS, |iib|=o(n−1/2) by reasoning similar to deriving the bound for
|ib|, and |iic|�P [slog(p∨n)]/n=oP(1) by reasoning similar to deriving the bound for |id |.

Step 4. (Auxiliary: Bounds on ‖β̃m (̂I)−βm0‖ and ‖β̃g (̂I)−βg0‖.) To establish a bound on ‖β̃g (̂I)−βg0‖ note
that ‖MÎ g/

√
n‖� | ‖X(β̃g (̂I)−βg0)/

√
n‖−‖Rg/

√
n‖ |, where ‖Rg/

√
n‖�P

√
s/n holds by Chebyshev inequality and

Condition ASTE(iii). Moreover, by Condition HLMS we have ‖MÎ g/
√

n‖=oP(n−1/4) and ŝ=|̂I|�P s. Thus

o(n−1/4)+√s/n �P ‖X(β̃g (̂I)−βg0)/
√

n‖�√φmin(s+ ŝ)‖β̃g (̂I)−βg0‖�P ‖β̃g (̂I)−βg0‖
since

√
φmin(s+ ŝ)�P 1 by Condition SE. The same logic yields ‖β̃m (̂I)−βm0‖�P

√
s/n+o(n−1/4).

Step 5. (Variance Estimation.) It follows similarly to Step 7 in the proof of Theorem 1 but using Condition HLMS
instead of Lemma 1.

Step 6. (Uniformity Properties) The proof is similar to the proof of Corollary 1. ‖

APPENDIX F. PROOF OF THEOREM 3

The two results have identical structure and have nearly the same proof, and so we present the proof only for the case of
considering the ATE parameter value α0=E[g(1,zi)−g(0,zi)].

In the proof a�b means that a�Ab, where the constant A depends on the constants in Condition HT only, but not
on n once n�n0=min{j :δj�1/2}, and not on P∈Pn. For the proof of claims (1) and (2) we consider a sequence Pn in
Pn, but for simplicity, we write P throughout the proof, omitting the index n. Since the argument is asymptotic, we can
just assume that n�n0 in what follows.
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Step 1. In this step we establish claim (1).
(a) We begin with a preliminary observation. Define, for t= (t1,t2,t3)∈R

2×(0,1),

ψ(y,d,t)= d(y−t2)

t3
− (1−d)(y−t1)

1−t3
−t2−t1.

The derivatives of this function with respect to t obey for all k= (kj)3
j=1∈N

3 :0� |k|�3,

|∂k
t ψ(y,d,t)|�L, ∀(y,d,t) : |y|�C,|t1|�C,|t2|�C,c′/2� |t3|�1−c′/2, (F.10)

where L depends only on c′ and C, |k|=∑3
j=1 kj , and ∂k

t :=∂k1
t1 ∂

k2
t2 ∂

k3
t3 .

(b). Let
ĥ(zi) := (̂g(0,zi),̂g(1,zi),m̂(zi))

′, h0(zi) := (g(0,zi),g(1,zi),m(zi))
′,

f̂h(yi,di,zi) :=ψ(yi,di ,̂h(zi)), fh0 (yi,di,zi) :=ψ(yi,di,h0(zi)).

We observe that with probability no less than 1−�n,

ĝ(0,·)∈G0, ĝ(1,·)∈G1 and m̂∈M,

Gd :={z �→x′β :‖β‖0�sC,‖x′iβ−g(d,zi)‖P,2�δnn−1/4,‖x′iβ−g(d,zi)‖P,∞�δn},
M :={z �→�(x′β) :‖β‖0�sC,‖�(x′iβ)−m(zi)‖P,2�δnn−1/4,‖�(x′iβ)−m(zi)‖P,∞�δn}.

To see this note, that under assumption HT (P), under condition (i)-(ii), under the event occurring under condition (ii) of
that assumption: for n�n0=min{j :δj�1/2}:

‖x̃′iβ−g(di,zi)‖P,2�‖x̃′i(β−βg0)‖P,2+‖rgi‖P,2�2‖x̃′i(β−βg0)‖Pn,2+‖rgi‖P,2�4δnn−1/4,

‖x̃′iβ−g(di,zi)‖P,∞�‖x̃′i(β−βg0)‖P,∞+‖rgi‖P,∞�Kn‖β−β0g‖1+δn�2δn,

for β= β̂g, with evaluation after computing the norms, and noting that for any β

‖x′iβ−g(1,zi)‖P,2∨‖x′iβ−g(0,zi)‖P,2�‖x̃′iβ−g(di,zi)‖P,2
under condition (iii). Furthermore, for n�n0=min{j :δj�1/2}:

‖�(x′iβ)−m(zi)‖P,2�‖�(x′iβ)−�(x′iβm0)‖P,2+‖rmi‖P,2
�‖∂�‖∞‖x̃′i(β−βm0)‖P,2+‖rmi‖P,2�‖∂�‖∞‖x̃′i(β−βm0)‖Pn,2+‖rmi‖P,2�δnn−1/4

‖�(x′iβ)−m(zi)‖P,∞�‖∂�‖∞‖x̃′i(β−βg0)‖P,∞+‖rmi‖P,∞�Kn‖β−βm0‖1+δn�2δn,

for β= β̂m0, with evaluation after computing the norms.
Hence with probability at least 1−�n,

ĥ∈Hn :={h= (ḡ(0,z),ḡ(1,z),m̄(z))∈G0×G1×M}.
(c) We have that

α0=E[fh0 ] and α̌=En[f̂h],
so that √

n(α̌−α0)=Gn[fh0 ]︸ ︷︷ ︸
i

+(Gn[fh]−Gn[fh0 ])︸ ︷︷ ︸
ii

+√n(E[fh−fh0 ])︸ ︷︷ ︸
iii

,

with h evaluated at h= ĥ. By the Lyapunov central limit theorem, σ−1
n i�N(0,1).

(d) Note that for �i=h(zi)−h0(zi), and �k
i denoting �k1

i1�
k2
i2�

k3
i3 ,

iii=√n
∑
|k|=1

E[∂k
t ψ(yi,di,h0(zi))�

k
i ]

+√n
∑
|k|=2

2−1E[∂k
t ψ(yi,di,h0(zi))�

k
i ]

+√n
∑
|k|=3

∫ 1

0
6−1E[∂k

t ψ(yi,di,h0(zi)+λ�i)�
k
i ]dλ =: iiia+iiib+iiic,

(with h evaluated at h= ĥ). By the law of iterated expectations and because

E[∂k
t ψ(yi,di,h0(zi))|zi]=0 ∀k∈N

3 : |k|=1,

we have that iiia=0. Moreover, uniformly for any h∈Hn we have that

|iiib|�
√

n‖h−h0‖2P,2�
√

n(δnn−1/4)2�δ2
n ,

|iiic|�
√

n‖h−h0‖2P,2‖h−h0‖P,∞�
√

n(δnn−1/4)2δn�δ3
n .

Since ĥ∈Hn with probability 1−�n, we have that once n�n0, P(|iii|�δ2
n )�1−�n.

 at M
ichigan State U

niversity on February 10, 2015
http://restud.oxfordjournals.org/

D
ow

nloaded from
 

http://restud.oxfordjournals.org/


[11:59 18/4/2014 rdt044.tex] RESTUD: The Review of Economic Studies Page: 647 608–650

BELLONI ET AL. INFERENCE AFTER MODEL SELECTION 647

(e). Furthermore, we have that |ii|�suph∈Hn
|Gn[fh]−Gn[fh0 ]|.

The class of functions Gd for d∈{0,1} is a union of at most
( p

Cs

)
VC-subgraph classes of functions with VC indices

bounded by C′s. The class of functions M is a subset of a union of at most
( p

Cs

)
VC-subgraph classes of functions with VC

indices bounded by C′s (monotone transformation � preserve the VC-subgraph property). These classes are uniformly
bounded and their entropies therefore satisfy

logN(ε,M,‖·‖Pn,2)+logN(ε,G0,‖·‖Pn,2)+logN(ε,G1,‖·‖Pn,2)�slogp+slog(1/ε).

Finally, the class Fn={fh−fh0 :h∈Hn} is a Lipschitz transform of Hn with bounded Lipschitz coefficients and with a
constant envelope. Therefore, we have that

logN(ε,Fn,‖·‖Pn,2)�slogp+slog(1/ε).

We shall invoke the following lemma derived in Belloni and Chernozhukov (2011a).

Lemma 2. (A Self-Normalized Maximal inequality). Let F be a measurable function class on a sample space. Let
F=supf∈F |f |, and suppose that there exist some constants ωn>3 and υ>1, such hat

logN(ε‖F‖Pn,2,F ,‖·‖Pn,2)�υm(log(n∨ωn)+log(1/ε)), 0<ε<1.

Then for every δ∈ (0,1/6) we have

sup
f∈F
|Gn(f )|�Cυ

√
2/δ

√
mlog(n∨ωn)(sup

f∈F
‖f ‖P,2∨ sup

f∈F
‖f ‖Pn,2),

with probability at least 1−δ for some constant that Cυ .

Then by Lemma 2 together and some simple calculations, we have that

|ii| � sup
f∈Fn

|Gn(f )|=OP(1)
√

slog(p∨n)( sup
f∈Fn

‖f ‖Pn,2∨ sup
f∈Fn

‖f ‖P,2)

� OP(1)
√

slog(p∨n)( sup
h∈Hn

‖h−h0‖Pn,2∨ sup
h∈Hn

‖h−h0‖P,2)=oP(1).

The last conclusion follows because suph∈Hn
‖h−h0‖P,2�δnn−1/4 by definition of Hn, and

sup
h∈Hn

‖h−h0‖Pn,2 �OP(1)·
(

sup
h∈Hn

‖h−h0‖P,2+‖rgi‖P,2+‖rmi‖P,2
)
,

where the last conclusion follows from the same argument as in step (b) but in a reverse order, switching from empirical
norms to population norms, using equivalence of norms over sparse sets imposed in condition (ii) , and also using an
application of Markov inequality to argue that ‖rgi‖Pn,2+‖rmi‖Pn,2=OP(1)(‖rgi‖P,2+‖rmi‖P,2).

Step 2. Claim (2) follows from consistency: σ̂n/σn=1+oP(1), which follows from σ̂n being a Lipschitz transform
of ĥ with respect to ‖·‖Pn,2, once ĥ∈Hn and the consistency of ĥ for h under ‖·‖Pn,2.

Step 3. Claim (3) is immediate from claims (1) and (2) by the way of contradiction as in the proof of Corollary 1. ‖

APPENDIX G. MODERATE DEVIATIONS FOR A MAXIMUM OF
SELF-NORMALIZED AVERAGES

Lemma 3. (Moderate Deviation Inequality for Maximum of a Vector). Suppose that

Sj=
∑n

i=1 Uij√∑n
i=1 U2

ij

,

where Uij are independent variables across i with mean zero. We have that

P

(
max

1�j�p
|Sj|>�−1(1−γ /2p)

)
�γ

(
1+ A

�3
n

)
,

where A is an absolute constant, provided for �n>0

0��−1(1−γ /(2p))� n1/6

�n
min

1�j�p
M2

j −1, Mj :=
(

1
n

∑n
i=1 E[U2

ij]
)1/2

( 1
n

∑n
i=1 E[|Uij|3]

)1/3 .
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This results is essentially due to Jing et al. (2003). The proof of this result, given in Belloni et al. (2012), follows from
a simple combination of union bounds with the bounds in Theorem 7.4 in de la Peña et al. (2009), which was originally
derived by Jing et al. (2003).
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