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ABSTRACT
The linear regression model is widely used in empirical work in economics, statistics, and many other disci-
plines. Researchers often include many covariates in their linear model specification in an attempt to con-
trol for confounders. We give inferencemethods that allow for many covariates and heteroscedasticity. Our
results are obtained using high-dimensional approximations, where the number of included covariates is
allowed togrowas fast as the sample size.Wefind that all of theusual versionsof Eicker–Whiteheteroscedas-
ticity consistent standard error estimators for linearmodels are inconsistent under this asymptotics.We then
propose a new heteroscedasticity consistent standard error formula that is fully automatic and robust to
both (conditional) heteroscedasticity of unknown form and the inclusion of possibly many covariates. We
apply our findings to three settings: parametric linear models with many covariates, linear panel models
withmany fixed effects, and semiparametric semi-linearmodels withmany technical regressors. Simulation
evidence consistent with our theoretical results is provided, and the proposed methods are also illustrated
with an empirical application. Supplementary materials for this article are available online.

1. Introduction

A key goal in empirical work is to estimate the structural,
causal, or treatment effect of some variable on an outcome of
interest, such as the impact of a labor market policy on out-
comes like earnings or employment. Since many variables mea-
suring policies or interventions are not exogenous, researchers
often employ observational methods to estimate their effects.
One important method is based on assuming that the vari-
able of interest can be taken as exogenous after controlling
for a sufficiently large set of other factors or covariates. A
major problem that empirical researchers face when employing
selection-on-observables methods to estimate structural effects
is the availability of many potential covariates. This problem
has become even more pronounced in recent years because of
the widespread availability of large (or high-dimensional) new
datasets.

Not only is it often the case that substantive discipline-
specific theory (or intuition) will suggest a large set of variables
that might be important, but also researchers usually prefer
to include additional “technical” controls constructed using
indicator variables, interactions, and other nonlinear transfor-
mations of those and other variables. Therefore, many empirical
studies include very many covariates to control for as broad an
array of confounders as possible. For example, it is common
practice to include dummy variables for many potentially
overlapping groups based on age, cohort, geographic location,
etc. Even when some controls are dropped after valid covariate
selection (Belloni, Chernozhukov, and Hansen 2014), many
controls usuallymay remain in the finalmodel specification. For
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example, Angrist and Hahn (2004) discussed when to include
many covariates in treatment effect models.

We present valid inference methods that explicitly account
for the presence of possibly many controls in linear regression
models under (conditional) heteroscedasticity. We consider the
setting where the object of interest is β in a model of the form

yi,n = β′xi,n + γ ′
nwi,n + ui,n, i = 1, . . . , n, (1)

where yi,n is a scalar outcome variable, xi,n is a regressor of small
(i.e., fixed) dimension d, wi,n is a vector of covariates of possi-
bly “large” dimension Kn, and ui,n is an unobserved error term.
Two important cases, discussed in more detail below, are “flexi-
ble” parametric modeling of controls via basis expansions such
as higher-order powers and interactions (i.e., a series-based for-
mulation of the partially linear regression model), and models
with many dummy variables such as multi-way fixed effects and
interactions thereof in panel datamodels. In both cases conduct-
ing OLS-based inference on β in (1) is straightforward when the
error ui,n is homoscedastic and/or the dimension Kn of the nui-
sance covariates is modeled as a vanishing fraction of the sample
size. The latter modeling assumption, however, is inappropriate
in applications withmany dummy variables and does not deliver
a good distributional approximation when many covariates are
included.

Motivated by the above observations, this article studies the
consequences of allowing the error ui,n in (1) to be (condition-
ally) heteroscedastic in a setting, where the covariatewi,n is per-
mitted to be high-dimensional in the sense that Kn is allowed,
but not required, to be a nonvanishing fraction of the sample
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size. Our main purpose is to investigate the possibility of con-
structing heteroscedasticity consistent variance estimators for
theOLS estimator ofβ in (1) without (necessarily) assuming any
special structure on the part of the covariatewi,n.Wepresent two
main results. First, we provide high-level sufficient conditions
guaranteeing a valid Gaussian distributional approximation to
the finite sample distribution of theOLS estimator ofβ, allowing
for the dimension of the nuisance covariates to be “large” rela-
tive to the sample size (i.e., Kn/n �→ 0). Second, we characterize
the large-sample properties of a class of variance estimators, and
use this characterization to obtain both negative and positive
results. The negative finding is that the Eicker–White estimator
is inconsistent in general, as are popular variants of this estima-
tor. The positive result gives conditions under which an alterna-
tive heteroscedasticity robust variance estimator (described in
more detail below) is consistent. The main condition needed
for our constructive results is a high-level assumption on the
nuisance covariates requiring in particular that their number
be strictly less than half of the sample size. As a by-product,
we also find that among the popular HCk class of standard
errors estimators for linear models, a variant of the HC3 esti-
mator delivers standard errors that are asymptotically upward
biased in general. Thus, standardOLS inference employingHC3
standard errors will be asymptotically valid, albeit conserva-
tive, even in high-dimensional settings where the number of
covariate wi,n is large relative to the sample size, that is, when
Kn/n �→ 0.

Our results contribute to the already sizeable literature on
heteroscedasticity robust variance estimators for linear regres-
sion models, a recent review of which is given by MacKinnon
(2012). Important papers whose results are related to ours
include (White 1980; MacKinnon and White 1985; Wu 1986;
Chesher and Jewitt 1987; Shao and Wu 1987; Chesher 1989;
Cribari-Neto, Ferrari, and Cordeiro 2000; Kauermann and
Carroll 2001; Bera, Suprayitno, and Premaratne 2002; Stock and
Watson 2008; Cribari-Neto, da Gloria, and Lima 2011; Müller
2013; Abadie, Imbens, and Zheng 2014). In particular, Bera,
Suprayitno, and Premaratne (2002) analyzed some finite sample
properties of a variance estimator similar to the one whose
asymptotic properties are studied herein. They use unbiased-
ness or minimum norm quadratic unbiasedness to motivate a
variance estimator that is similar in structure to ours, but their
results are obtained for fixed Kn and n and are silent about the
extent to which consistent variance estimation is even possible
when Kn/n �→ 0.

This article also adds to the literature on high-dimensional
linear regression where the number of regressors grow with
the sample size; see, for example, Huber (1973), Koenker
(1988), Mammen (1993), Anatolyev (2012), El Karoui et al.
(2013), Zheng et al. (2014), Cattaneo, Jansson, and Newey
(2018), and Li and Müller (2017), and references therein. In
particular, Huber (1973) showed that fitted regression values
are not asymptotically normal when the number of regressors
grows as fast as sample size, while (Mammen 1993) obtained
asymptotic normality for arbitrary contrasts of OLS estima-
tors in linear regression models where the dimension of the
covariates is at most a vanishing fraction of the sample size.
More recently, El Karoui et al. (2013) showed that, if a Gaussian
distributional assumption on regressors and homoscedasticity

is assumed, then certain estimated coefficients and contrasts
in linear models are asymptotically normal when the number
of regressors grow as fast as sample size, but do not discuss
inference results (even under homoscedasticity). Our result
in Theorem 1 below shows that certain contrasts of OLS esti-
mators in high-dimensional linear models are asymptotically
normal under fairly general regularity conditions. Intuitively,
we circumvent the problems associated with the lack of asymp-
totic Gaussianity in general high-dimensional linear models
by focusing exclusively on a small subset of regressors when
the number of covariates gets large. We give inference results
by constructing heteroscedasticity consistent standard errors
without imposing any distributional assumption or other very
specific restrictions on the regressors. In particular, we do not
require the coefficients γn to be consistently estimated; in fact,
they will not be in most of our examples discussed below.

Our high-level conditions allow for Kn ∝ n and restrict the
data-generating process in fairly general and intuitive ways.
In particular, our generic sufficient condition on the nuisance
covariates wi,n covers several special cases of interest for empir-
ical work. For example, our results encompass (and weakens
in a certain sense) those reported in Stock and Watson (2008),
who investigated the one-way fixed effects panel data regres-
sion model and showed that the conventional Eicker–White
heteroscedasticity-robust variance estimator is inconsistent,
being plagued by a nonnegligible bias problem attributable to
the presence of many covariates (i.e., the fixed effects). The very
special structure of the covariates in the one-way fixed effects
estimator enables an explicit characterization of this bias, and
also leads to a direct plug-in consistent bias-corrected version
of the Eicker–White variance estimator. The generic variance
estimator proposed herein essentially reduces to this bias-
corrected variance estimator in the special case of the one-way
fixed effects model, even though our results are derived from a
different perspective and generalize to other settings.

Furthermore, our general inference results can be used when
many multi-way fixed effects and similar discrete covariates are
introduced in a linear regression model, as is usually the case in
social interaction and network settings. For example, in a recent
contribution Verdier (2017) developed new results for two-way
fixed effect design and projection matrices, and use them to
verify our high-level conditions in linear models with two-way
unobserved heterogeneity and sparsely matched data (which
can also be interpreted as a network setting). These results pro-
vide another interesting and empirically relevant illustration
of our generic theory. Verdier (2017) also developed inference
results able to handle time series dependence in his specific
context, which are not covered by our assumptions because we
impose independence in the cross-sectional dimension of the
(possibly grouped) data.

The rest of this article is organized as follows. Section 2
presents the variance estimators we study and gives a heuris-
tic description of their main properties. Section 3 introduces
our general framework, discusses high-level assumptions and
illustrates the applicability of our methods using three lead-
ing examples. Section 4 gives the main results of the article.
Section 5 reports the results of a Monte Carlo experiment, while
Section 6 illustrates ourmethods using an empirical application.
Section 7 concludes. Proofs as well as additionalmethodological
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and numerical results are reported in the online supplemental
Appendix.

2. Overview of Results

For the purposes of discussing distribution theory and variance
estimators associated with the OLS estimator β̂n of β in (1),
when the Kn-dimensional nuisance covariate wi,n is of possibly
“large” dimension and/or the parameter γn cannot be estimated
consistently, it is convenient to write the estimator in “partialled
out” form as

β̂n =
( n∑

i=1

v̂i,nv̂′
i,n

)−1 ( n∑
i=1

v̂i,nyi,n

)
, v̂i,n =

n∑
j=1

Mij,nx j,n,

where Mij,n = 1(i = j) − w′
i,n(
∑n

k=1 wk,nw′
k,n)

−1w j,n, 1(·)
denotes the indicator function, and the relevant inverses are
assumed to exist. Defining �̂n = ∑n

i=1 v̂i,nv̂
′
i,n/n, the objective

is to establish a valid Gaussian distributional approximation
to the finite sample distribution of the OLS estimator β̂n, and
then find an estimator �̂n of the (conditional) variance of∑n

i=1 v̂i,nui,n/
√
n such that

�̂−1/2
n

√
n(β̂n − β) →d N (0, I), �̂n = �̂−1

n �̂n�̂
−1
n , (2)

in which case asymptotic valid inference on β can be conducted
in the usual way by employing the distributional approximation
β̂n

a∼ N (β, �̂n/n).
Our first result, Theorem 1 below, gives sufficient condi-

tions for asymptotic standard normality of the infeasible statis-
tic �

−1/2
n

√
n(β̂n − β), where �n = �̂−1

n �n�̂
−1
n and �n denotes

the (conditional) variance of
∑n

i=1 v̂i,nui,n/
√
n. The assump-

tions of Theorem 1 allow for both Kn/n �→ 0 and conditional
heteroscedasticity. Under the assumptions of this theorem, we
show in the supplemental appendix that�n = Op(1), so as a by-
product we find that β̂n remains

√
n-consistent also in the high-

dimensional setting allowed for in this article.More importantly,
Theorem 1 is a useful starting point for discussing valid variance
estimation in high-dimensional linear regressionmodels. Defin-
ing ûi,n = ∑n

j=1 Mij,n(y j,n − β̂
′
nx j,n), standard choices of �̂n in

the fixed-Kn case include the homoscedasticity-only estimator

�̂HO
n = σ̂ 2

n �̂n, σ̂ 2
n = 1

n − d − Kn

n∑
i=1

û2i,n,

and the Eicker–White-type estimator

�̂EW
n = 1

n

n∑
i=1

v̂i,nv̂′
i,nû

2
i,n.

Perhaps not too surprisingly, Theorem 2 below finds that
consistency of �̂HO

n under homoscedasticity holds quite gener-
ally even formodels withmany covariates. In contrast, construc-
tion of a heteroscedasticity-robust estimator of�n is more chal-
lenging, as it turns out that consistency of �̂EW

n generally requires
Kn to be a vanishing fraction of n.

To fix ideas, suppose (yi,n, x′
i,n,w′

i,n) are iid over i. It turns out
that, under certain regularity conditions,

�̂EW
n = 1

n

n∑
i=1

n∑
j=1

M2
i j,nv̂i,nv̂

′
i,nE

[
u2j,n|x j,n,w j,n

]+ op(1),

whereas a requirement for (2) to hold is that the estimator �̂n
satisfies

�̂n = 1
n

n∑
i=1

v̂i,nv̂′
i,nE

[
u2i,n|xi,n,wi,n

]+ op(1). (3)

The difference between the leading terms in the expansions is
nonnegligible in general unlessKn/n → 0. In recognition of this
problemwith �̂EW

n ,we study themore general class of estimators
of the form

�̂n(κn) = 1
n

n∑
i=1

n∑
j=1

κi j,nv̂i,nv̂′
i,nû

2
j,n,

where κi j,n denotes element (i, j) of a symmetric matrix κn =
κn(w1,n, . . . ,wn,n). Estimators that can be written in this fash-
ion include �̂EW

n (which corresponds to κn = I) as well as vari-
ants of the so-called HCk estimators, k ∈ {1, 2, 3, 4}, reviewed
by Long and Ervin (2000) and MacKinnon (2012), among
many others. To be specific, a natural variant of HCk is
obtained by choosing κn to be diagonal with κii,n = ϒi,nM

−ξi,n
ii,n ,

where (ϒi,n, ξi,n) = (1, 0) for HC0 (and corresponding to
�̂EW

n ), (ϒi,n, ξi,n) = (n/(n − Kn), 0) for HC1, (ϒi,n, ξi,n) =
(1, 1) for HC2, (ϒi,n, ξi,n) = (1, 2) for HC3, and (ϒi,n, ξi,n) =
(1,min(4, nMii,n/Kn)) for HC4. See Sections 4.3 for more
details.

In Theorem 3, we show that all of the HCk-type estimators,
which correspond to a diagonal choice of κn, have the shortcom-
ing that they do not satisfy (3) when Kn/n � 0. On the other
hand, it turns out that a certain nondiagonal choice of κn makes
it possible to satisfy ( 3) even if Kn is a nonvanishing fraction of
n. To be specific, it turns out that under (regularity conditions
and)mild conditions on theweights κi j,n, the variance estimator
�̂n(κn) satisfies

�̂n(κn) = 1
n

n∑
i=1

n∑
j=1

n∑
k=1

κik,nM2
k j,nv̂i,nv̂

′
i,nE

[
u2j,n|x j,n,w j,n

]+ op(1),

(4)
suggesting that (3) holds with �̂n = �̂n(κn) provided κn is cho-
sen in such a way that

n∑
k=1

κik,nM2
k j,n = 1(i = j), 1 ≤ i, j ≤ n. (5)

Accordingly, we define

�̂HC
n = �̂n

(
κHCn

) = 1
n

n∑
i=1

n∑
j=1

κHCi j,nv̂i,nv̂
′
i,nû

2
j,n,
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where, withMn denoting thematrix with element (i, j) given by
Mij,n and 
 denoting the Hadamard product,

κHCn =

⎛⎜⎝ κHC11,n · · · κHC1n,n
...

. . .
...

κHCn1,n · · · κHCnn,n

⎞⎟⎠ =

⎛⎜⎝M2
11,n · · · M2

1n,n
...

. . .
...

M2
n1,n · · · M2

nn,n

⎞⎟⎠
−1

= (Mn 
 Mn)
−1.

The estimator �̂HC
n is well-defined wheneverMn 
 Mn is invert-

ible, a simple sufficient condition for which is that Mn < 1/2,
where

Mn = 1 − min
1≤i≤n

Mii,n.

The fact that Mn < 1/2 implies invertibility of Mn 
 Mn is a
consequence of the Gerschgorin circle theorem. For details, see
Section 3 in the supplemental Appendix. More importantly, a
slight strengthening of the condition Mn < 1/2 will be shown
to be sufficient for (2) and (3) to hold with �̂n = �̂HC

n . Our final
result, Theorem 4, formalizes this finding.

The key intuition underlying our variance estimation result
is that, even though each conditional variance E[u2i,n|xi,n,wi,n]
cannot be well estimated due to the curse of dimensionality, an
averaged version such as the leading term in (3) can be estimated
consistently. Thus, taking Ê[u2i,n|xi,n,wi,n] = ∑n

k=1 κik,nû2k,n as
an estimator of E[u2i,n|xi,n,wi,n], plugging it into the leading
term in (3), and computing conditional expectations, we obtain
the leading term in (4). To make this leading term equal to
the desired target

∑n
i=1 v̂i,nv̂

′
i,nE[u2i,n|xi,n,wi,n], it is natural to

require

n∑
j=1

n∑
k=1

κik,nM2
k j,nE

[
u2j,n|x j,n,w j,n

]
= E[u2i,n|xi,n,wi,n] 1 ≤ i ≤ n.

Since E[u2i,n|xi,n,wi,n] are unknown, our variance estimator
solves (5), which generates enough equations to solve for all
n(n − 1)/2 possibly distinct elements in κHCn .

3. Setup

This section introduces a general framework encompassing sev-
eral special cases of linear-in-parameters regression models of
the form (1). We first present generic high-level assumptions,
and then discuss their implications as well as some easier to ver-
ify sufficient conditions. Finally, to close this setup section, we
briefly discuss three motivating leading examples: linear regres-
sion models with increasing dimension, multi-way fixed effect
linearmodels, and semiparametric semi-linear regression. Tech-
nical details and related results for these examples are given in
the supplemental Appendix.

3.1. Framework

Suppose {(yi,n, x′
i,n,w′

i,n) : 1 ≤ i ≤ n} is generated by (1). Let
‖ · ‖ denote the Euclidean norm, set Xn = (x1,n, . . . , xn,n), and
for a collectionWn of randomvariables satisfyingE[wi,n|Wn] =

wi,n, define the constants

�n = 1
n

n∑
i=1

E[R2
i,n], Ri,n = E

[
ui,n|Xn,Wn

]
,

ρn = 1
n

n∑
i=1

E
[
r2i,n
]
, ri,n = E[ui,n|Wn],

χn = 1
n

n∑
i=1

E[‖Qi,n‖2], Qi,n = E[vi,n|Wn],

where vi,n = xi,n − (
∑n

j=1 E[x j,nw′
j,n])(

∑n
j=1 E[w j,nw′

j,n])−1

wi,n is the population counterpart of v̂i,n.Also, letting λmin(·)
denote the minimum eigenvalue of its argument, define

Cn = max
1≤i≤n

{E [U 4
i,n|Xn,Wn

]+ E[‖Vi,n‖4|Wn]

+ 1/E
[
U 2
i,n|Xn,Wn

]} + 1/λmin(E[�̃n|Wn]),

where Ui,n = yi,n − E[yi,n|Xn,Wn],Vi,n = xi,n − E[xi,n|Wn],
�̃n = ∑n

i=1 Ṽi,nṼ′
i,n/n, and Ṽi,n = ∑n

j=1 Mij,nV j,n.

We impose the following three high-level conditions. Let
limn→∞an = lim supn→∞ an for any sequence an.

Assumption 1 (Sampling). C[Ui,n,Uj,n|Xn,Wn] = 0 for i �= j
and max1≤i≤Nn #Ti,n = O(1), where #Ti,n is the cardinality of
Ti,n and where {Ti,n : 1 ≤ i ≤ Nn} is a partition of {1, . . . , n}
such that {(Ut,n,V′

t,n) : t ∈ Ti,n} are independent over i condi-
tional onWn.

Assumption 2 (Design). P[λmin(
∑n

i=1 wi,nw′
i,n) > 0] → 1,

limn→∞Kn/n < 1, and Cn = Op(1).

Assumption 3 (Approximations). χn = O(1), �n + n(�n −
ρn) + nχn�n = o(1), and max1≤i≤n ‖v̂i,n‖/

√
n = op(1).

3.2. Discussion of Assumptions

Assumptions 1–3 are meant to be high-level and general, allow-
ing for different linear-in-parameters regression models. We
now discuss the main restrictions imposed by these assump-
tions. We further illustrate them in the following subsection
using more specific examples.

... Assumption 
This assumption concerns the sampling properties of the
observed data. It generalizes classical iid sampling by allowing
for groups or “clusters” of finite but possibly heterogeneous size
with arbitrary intra-group dependence, which is very common
in the context of fixed effects linear regression models. As
currently stated, this assumption does not allow for correlation
in the error terms across units, and therefore excludes clustered,
spacial or time series dependence in the sample. We conjecture
our main results extend to the latter cases, though here we
focus on i.n.i.d. (conditionally) heteroscedastic models only,
and hence relegate the extension to errors exhibiting clustered,
spacial or time series dependence for future work. Assumption
1 reduces to classical iid sampling when Nn = n, Ti,n = {i}
[implying max1≤i≤Nn #Ti,n = 1], and all observations have the
same distribution.
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... Assumption 
This assumption concerns basic design features of the linear
regression model. The first two restrictions are mild and reflect
the main goal of this article, that is, analyzing linear regression
models with many nuisance covariates wi,n. In practice, the first
restriction regarding the minimum eigenvalue of the design
matrix

∑n
i=1 wi,nw′

i,n is always imposed by removing redundant
(i.e., linearly dependent) covariates; from a theoretical perspec-
tive, this condition requires either restrictions on the distribu-
tional relationship of such covariates or some form of trimming
leading to selection of included covariates (e.g., most software
packages remove covariates leading to “too” small eigenvalues
of the design matrix by means of some hard-thresholding
rule).

On the other hand, the last condition, Cn = Op(1), may be
restrictive in some settings: for example, if the covariates have
unbounded support (e.g., they are normally distributed) and
heteroscedasticity is unbounded (e.g., unbounded multiplica-
tive heteroscedasticity), then the assumption may fail. Simple
sufficient conditions for Cn = Op(1) can be formulated when
the covariates have compact support, or the heteroscedasticity
is multiplicative and bounded, because in these cases it is
easy to bound the conditional moments of the error terms.
Nevertheless, it would be useful to know whether the condi-
tion Cn = Op(1) can be relaxed to a version involving only
unconditional moments.

... Assumption 
This assumption requires two basic approximations to hold.
First, concerning bias, conditions on �n are related to the
approximation quality of the linear-in-parameters model
(1) for the “long” conditional expectation E[yi,n|Xn,Wn].
Similarly, conditions on ρn and χn are related to linear-
in-parameters approximations for the “short” conditional
expectations E[yi,n|Wn] and E[xi,n|Wn], respectively. All these
approximations are measured in terms of population mean
square error, and are at the heart of empirical work employing
linear-in-parameters regression models. Depending on the
model of interest, different sufficient conditions can be given
for these assumptions. Here, we briefly mention the most
simple one: (a) if E[ui,n|Xn,Wn] = 0 for all i and n, which
can be interpreted as exogeneity (e.g., no misspecification
bias), then 0 = ρn = n(�n − ρn) + nχn�n for all n; and (b) if
E[‖xi,n‖2] = O(1) for all i, then χn = O(1). Other sufficient
conditions are discussed below.

Second, the high-level condition max1≤i≤n ‖v̂i,n‖/
√
n =

op(1) restricts the distributional relationship between the finite-
dimensional covariate of interest xi,n and the high-dimensional
nuisance covariate wi,n. This condition can be interpreted as a
negligibility condition and thus comes close to minimal for the
central limit theorem to hold. At the present level of general-
ity it seems difficult to formulate primitive sufficient conditions
for this restriction that cover all cases of interest, but for com-
pleteness we mention that Lemma SA-7 in the supplemental
Appendix shows that under mild moment conditions it suffices
to require that one of the following conditions hold: (i) Mn =
op(1), or (ii) χn = o(1), or (iii) max1≤i≤n

∑n
j=1 I(Mij,n �= 0) =

op(n1/3).

Each of these conditions is interpretable. First, Mn ≥ Kn/n
because

∑n
i=1 Mii,n = n − Kn and a necessary condition for (i)

is therefore that Kn/n → 0. Conversely, because

Mn ≤ Kn

n
1 − min1≤i≤n Mii,n

1 − max1≤i≤n Mii,n
,

the condition Kn/n → 0 is sufficient for (i) whenever the
design is “approximately balanced” in the sense that (1 −
min1≤i≤n Mii,n)/(1 − max1≤i≤n Mii,n) = Op(1). In other words,
(i) requires and effectively covers the case, where it is assumed
that Kn is a vanishing fraction of n. In contrast, conditions (ii)
and (iii) can also hold when Kn is a nonvanishing fraction of n,
which is the case of primary interest in this article.

Because (ii) is a requirement on the accuracy of the
approximation E[xi,n|wi,n] ≈ δ′

nwi,n with δn = E[wi,nw′
i,n]−1

E[wi,nx′
i,n], primitive conditions for it are available when, for

example, the elements of wi,n are approximating functions.
Indeed, in such cases one typically has χn = O(K−α

n ) for some
α > 0, so condition (ii) not only accommodates Kn/n � 0,
but actually places no upper bound on the magnitude of Kn in
important special cases. This condition also holds when wi,n are
dummy variables or discrete covariates, as we discuss in more
detail below.

Finally, condition (iii), and its underlying higher-level condi-
tion described in the supplemental Appendix, is useful to handle
cases where wi,n cannot be interpreted as approximating func-
tions, but rather just as many different covariates included in the
linear model specification. This condition is a “sparsity” con-
dition on the projection matrix Mn, which allows for Kn/n �

0. The condition is easy to verify in certain cases, including
those where “locally bounded” approximating functions or fixed
effects are used (see below for concrete examples).

3.3. Motivating Examples

We briefly mention three motivating examples of linear-in-
parameter regression models covered by our results. All tech-
nical details are given in the supplemental Appendix.

... Linear RegressionModel with Increasing Dimension
This leading example has a long tradition in statistics and econo-
metrics. The model takes (1) as the data-generating process
(DGP), typically with i.i.d. data and the exogeneity condition
E[ui,n|xi,n,wi,n] = 0. However, our assumptions only require
nE[(E[ui,n|xi,n,wi,n])2] = o(1), and hence (1) can be inter-
preted as a linear-in-parameters mean-square approximation to
the unknown conditional expectation E[yi,n|xi,n,wi,n]. Either
way, β̂n is the standard OLS estimator.

Setting Wn = (w1,n, . . . ,wn,n), Nn = n, and Ti,n = {i},
Assumptions 1 and 2 are standard, while Assumption
3 is satisfied provided that E[‖xi,n‖2] = O(1) [imply-
ing χn = O(1)], nE[(E[ui,n|xi,n,wi,n])2] = o(1) [implying
n(�n − ρn) + nχn�n = o(1)], and max1≤i≤n ‖v̂i,n‖/

√
n =

op(1). Primitive sufficient conditions for the latter negligibility
condition were discussed above. For example, under regularity
conditions, χn = o(1) if either (a) E[xi,n|wi,n] = δ′wi,n, (b) the
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nuisance covariates are discrete and a saturated dummy vari-
ables model is used, or (c) wi,n are constructed using sieve func-
tions. Alternatively, max1≤i≤n

∑n
j=1 1(Mij,n �= 0) = op(n1/3) is

satisfied provided the distribution of the nuisance covariates
wi,n generates a projection matrix Mn that is approximately a
band matrix (see below for concrete examples). Precise regular-
ity conditions for this example, including a detailed discussion
of the special case where (x′

i,n,w′
i,n)

′ ∼ N (0, I), are given in
Section 4.1 of the supplemental Appendix.

... Fixed Effects Panel Data RegressionModel
A second class of examples covered by our results are linear
panel data models withmulti-way fixed effects and relatedmod-
els such as those encountered in networks, spillovers, or social
interactions settings. A common feature in these examples is
the presence of possibly many dummy variables in wi,n, cap-
turing unobserved heterogeneity or other unobserved effects
across units (e.g., network link or spillover effect). Inmany appli-
cations, the number of distinct dummy-type variables is large
because researchers often include multi-group indicators, inter-
actions thereof, and similar regressors obtained from factor vari-
ables. In these complicatedmodels, the nuisance covariates need
to be estimated explicitly, even in simple linear regression prob-
lems, because it is not possible to difference out the multi-way
indicator variables for estimation and inference.

Stock and Watson (2008) considered heteroscedasticity-
robust inference for the one-way fixed effect panel data regres-
sion model

Yit = αi + β′Xit +Uit , i = 1, . . . ,N, t = 1, . . . ,T, (6)

where αi ∈ R is an individual-specific intercept, Xit is a
regressor of dimension d, and Uit is an scalar error term.
To map this model into our framework, suppose that
{(Ui1, . . . ,UiT ,X′

i1, . . . ,X′
iT ) : 1 ≤ i ≤ n} are independent over

i, E[Uit |Xi1, . . . ,XiT ] = 0, and E[UitUis|Xi1, . . . ,XiT ] = 0 for
t �= s. Then, setting n = NT, Kn = N, γn = (α1, . . . , αN )′,
and, for 1 ≤ i ≤ N and 1 ≤ t ≤ T, y(i−1)T+t,n = Yit ,
x(i−1)T+t,n = Xit , u(i−1)T+t,n = Uit , and w(i−1)T+t,n equal to
the ith unit vector of dimension N, the model (6) is also of the
form (1) and β̂n is the fixed effects estimator of β. In general,
this model does not satisfy an iid assumption, but Assumption 1
enables us to employ results for independent random variables
when developing asymptotics. In particular, unlike (Stock and
Watson 2008), we do not require (Ui1, . . . ,UiT ,X′

i1 . . . ,X′
iT )

to be i.i.d. over i, nor do we require any kind of stationarity
on the part of (Uit ,X′

it ). The amount of variance hetero-
geneity permitted is quite large, since it suffices to require
V[Yit |Xi1, . . . ,XiT ] = E[U 2

it |Xi1, . . . ,XiT ] to be bounded and
bounded away from zero. (On the other hand, serial corre-
lation is assumed away because our assumptions imply that
C[Yit ,Yis|Xi1, . . . ,XiT ] = 0 for t �= s.) In other respects, this
model is in fact quite tractable due to the special nature of
the covariates wi,n, that is, a dummy variable for each unit
i = 1, . . . ,N.

In this one-way fixed effects example, Kn/n = 1/T and
therefore a high-dimensional model corresponds to a short
panel model: max1≤i≤n

∑n
j=1 1(Mij,n �= 0) = T and hence the

negligibility condition holds easily. If T ≥ 2, our asymptotic

Gaussian approximation for the distribution of the least-squares
estimator β̂n is valid (see Theorem 1), despite the coefficients γn
not being consistently estimated.On the other hand, consistency
of our generic variance estimator requires T ≥ 3 [implying
Kn/n < 1/2]; see Theorems 3 and 4. Further details are given in
Section 4.2 of the supplemental Appendix, wherewe also discuss
a case-specific consistent variance estimator when T = 2.

Our generic results go beyond one-way fixed effect linear
regression models, as they can be used to obtain valid infer-
ence in other contexts, where multi-way fixed effects or similar
discrete regressors are included. For a second concrete exam-
ple, consider the recent work of (Verdier 2017, and references
therein) in the context of linear models with two-way unob-
served heterogeneity and sparsely matched data. This model is
isomorphic to a network model, where students and teacher (or
workers and firms, for another example) are “matched” or “con-
nected” over time, but potential unobserved heterogeneity at
both levels is a concern. In this setting, under random sampling,
Verdier (2017) offerred primitive conditions for our high-level
assumptions when two-way fixed effect models are used for esti-
mation and inference. To give one concrete example, he finds
that if T ≥ 5 and for any pair of teachers (firms), the number of
students (workers) assigned to both teachers (firms) in the pair
is either zero or greater than three, then our key high-level con-
dition in Theorem 4 below is verified.

... Semiparametric Partially LinearModel
Another model covered by our results is the partially linear
model

yi = β′xi + g(zi) + εi, i = 1, . . . , n, (7)

where xi and zi are explanatory variables, εi is an error term sat-
isfying E[εi|xi, zi] = 0, the function g(z) is unknown, and iid
sampling is assumed. Suppose {pk(z) : k = 1, 2, . . .} are func-
tions having the property that linear combinations can approxi-
mate square-integrable functions of zwell, in which case g(zi) ≈
γ ′
npn(zi) for some γn, where pn(z) = (p1(z), . . . , pKn (z))′.

Defining yi,n = yi, xi,n = xi, wi,n = pn(zi), and ui,n = εi +
g(zi) − γ ′

nwi,n, the model (7) is of the form (1), and β̂n is
the series estimator of β; see, for example, Donald and Newey
(1994), Cattaneo, Jansson, and Newey (2018), and references
therein.

Constructing the basis pn(zi) in applications may require
using a large Kn, either because the underlying functions are
not smooth enough or because dim(zi) is large. For exam-
ple, if a cubic polynomial expansion is used, also known
as a power series of order p = 3, then dim(wi) = (p +
dim(zi))!/(p! dim(zi)!) = 286 when dim(zi) = 10, and there-
fore flexible estimation and inference using the semi-linear
model (7) with a sample size of n = 1000 gives Kn/n = 0.286.
For further technical details on series-based methods see, for
example, Newey (1997), Chen (2007), Cattaneo and Farrell
(2013), and Belloni et al. (2015), and references therein. For
another example, when the basis functions pn(z) are con-
structed using partitioning estimators, the OLS estimator of β

becomes a subclassification estimator, a method that has been
proposed in the literature on program evaluation and treatment
effects; see, for example, Cochran (1968), RosenbaumandRubin
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(1983), and Cattaneo and Farrell (2011), and references therein.
When a partitioning estimator of order 0 is used, the semi-linear
model becomes a one-way fixed effects linear regression model,
where each dummy variable corresponds to one (disjoint) par-
tition on the support of zi; in this case, Kn is to the number of
partitions or fixed effects included in the estimation.

Our primitive regularity conditions for this example include

�n = min
γ∈RKn

E[|g(zi) − γ ′pn(zi)|2] = o(1),

χn = min
δ∈RKn×d

E[‖E[xi|zi] − δ′pn(zi)‖2] = O(1),

n�nχn = o(1), and the negligibility condition max1≤i≤n ‖
v̂i,n‖/

√
n = op(1). A key finding implied by these regularity

conditions is that we only require mild smoothness conditions
on g(zi) and E[xi|zi]. The negligibility condition is automati-
cally satisfied if χn = o(1), as discussed above, but in fact our
results do not require any approximation of E[xi|zi], as usually
assumed in the literature, provided a “locally supported” basis
is used; that is, any basis pn(z) that generates an approximately
band projection matrixMn; examples of such basis include par-
titioning and spline estimators. See Section 4.3 in the supple-
mental Appendix for further discussion and technical details.

4. Results

This section presents our main theoretical results for infer-
ence in linear regression models with many covariates and het-
eroscedasticity.Mathematical proofs, and other technical results
thatmay be of independent interest, are given in the supplemen-
tal Appendix.

4.1. Asymptotic Normality

As a means to the end of establishing (2), we give an asymptotic
normality result for β̂n which may be of interest in its own right.

Theorem 1. Suppose Assumptions 1–3 hold. Then,

�−1/2
n

√
n(β̂n − β) →d N (0, I), �n = �̂−1

n �n�̂
−1
n , (8)

where �n = ∑n
i=1 v̂i,nv̂

′
i,nE[U 2

i,n|Xn,Wn]/n.

In the literature on high-dimensional linear models,
Mammen (1993) obtained a similar asymptotic normality
result as in Theorem 1 but under the condition K1+δ

n /n → 0
for δ > 0 restricted by certain moment condition on the covari-
ates. In contrast, our result only requires limn→∞Kn/n < 1,
but imposes a different restriction on the high-dimensional
covariates (e.g., condition (i), (ii), or (iii) discussed previously)
and furthermore exploits the fact that the parameter of interest
is given by the first d coordinates of the vector (β′, γ ′

n)
′ (i.e.,

in Mammen (1993) notation, it considers the case c = (b′, 0′)′

with b denoting any d-dimensional vector and 0 denoting a
Kn-dimensional vector of zeros).

In isolation, the fact that Theorem 1 removes the require-
ment Kn/n → 0 may seem like little more than a subtle tech-
nical improvement over results currently available. It should be
recognized, however, that conducting inference turns out to be
considerably harder whenKn/n �→ 0. The latter is an important
insight about large-dimensional models that cannot be deduced

from results obtained under the assumption Kn/n → 0, but can
be obtained with the help of Theorem 1. In addition, it is worth
mentioning that Theorem 1 is a substantial improvement over
(Cattaneo, Jansson, and Newey 2018, Theorem 1) because here
it is not required that Kn → ∞ nor χn = o(1). To achieve this
improvement, a differentmethod of proof is used. This improve-
ment applies not only to the partially linear model example, but
more generally to linear models with many covariates, because
Theorem 1 applies to quite general form of nuisance covariate
wi,n beyond specific approximating basis functions. In the spe-
cific case of the partially linear model, this implies that we are
able to weaken smoothness assumptions (or the curse of dimen-
sionality), otherwise required to satisfy the conditionχn = o(1).

Remark 1. Theorem 1 does not require nor imply consistency of
the (implicit) least squares estimate of γn, as in fact such a result
will not be true inmost applications withmany nuisance covari-
ateswn,i. For example, in a partially linearmodel (7) the approx-
imating coefficients γn will not be consistently estimated unless
Kn/n → 0, or in a one-way fixed effect panel data model (6) the
unit-specific coefficients in γn will not be consistently estimated
unless Kn/n = 1/T → 0. Nevertheless, Theorem 1 shows that
β̂n can still be

√
n-normal under fairly general conditions; this

result is due to the intrinsic linearity and additive separability of
the model (1).

4.2. Variance Estimation

Achieving (2), the counterpart of (8) in which the unknown
matrix �n is replaced by the estimator �̂n, requires additional
assumptions. One possibility is to impose homoscedasticity.

Theorem 2. Suppose the assumptions of Theorem 1 hold. If
E[U 2

i,n|Xn,Wn] = σ 2
n , then (2) holds with �̂n = �̂HO

n .

This result shows in some generality that homoscedastic
inference in linear models remains valid even when Kn is pro-
portional to n, provided the variance estimator incorporates a
degrees-of-freedom correction, as �̂HO

n does.
Establishing (2) is also possible when Kn is assumed to be

a vanishing fraction of n, as is of course the case in the usual
fixed-Kn linear regression model setup. The following theorem
establishes consistency of the conventional standard error esti-
mator �̂EW

n under the assumption Mn →p 0, and also derives
an asymptotic representation for estimators of the form �̂n(κn)

without imposing this assumption, which is useful to study the
asymptotic properties of other members of the HCk class of
standard error estimators.

Theorem 3. Suppose the assumptions of Theorem 1 hold. (a)
If Mn →p 0, then (2) holds with �̂n = �̂EW

n . (b) If ‖κn‖∞ =
max1≤i≤n

∑n
j=1 |κi j,n| = Op(1), then

�̂n(κn) = 1
n

n∑
i=1

n∑
j=1

n∑
k=1

κik,nM2
k j,nv̂i,nv̂

′
i,nE

[
U 2

j,n|Xn,Wn
]+ op(1).

The conclusion of part (a) typically fails when the condition
Kn/n → 0 is dropped. For example, when specialized to κn = I
part (b) implies that in the homoscedastic case (i.e., when the
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assumptions of Theorem 2 are satisfied) the standard estima-
tor �̂EW

n is asymptotically downward biased in general (unless
Kn/n → 0). In the following section, we make this result pre-
cise and discuss similar results for other popular variants of the
HCk estimators mentioned above.

On the other hand, because
∑

1≤k≤n κHCik,nM
2
k j,n = 1(i = j) by

construction, part (b) implies that �̂HC
n is consistent provided

‖κHCn ‖∞ = Op(1). A simple condition for this to occur can be
stated in terms ofMn. Indeed, ifMn < 1/2, then κHCn is diago-
nally dominant and it follows from Theorem 1 of Varah (1975)
that

∥∥κHCn ∥∥∞ ≤ 1
1/2 − Mn

.

As a consequence, we obtain the following theorem, whose con-
ditions can hold even if Kn/n � 0.

Theorem 4. Suppose the assumptions of Theorem 1 hold. If
P[Mn < 1/2] → 1 and if 1/(1/2 − Mn) = Op(1), then (2)
holds with �̂n = �̂HC

n .

Because Mn ≥ Kn/n, a necessary condition for Theorem 4
to be applicable is that limn→∞Kn/n < 1/2. When the design
is balanced, that is, when M11,n = · · · = Mnn,n (as occurs in
the panel data model (6)), the condition limn→∞Kn/n < 1/2 is
also sufficient. It follows from Section 4.1.1 of the supplemental
Appendix that the condition limn→∞Kn/n < 1/2 is also suffi-
cient in the special case where wi,n is iid with a zero-mean nor-
mal distribution, but in general it seems difficult to formulate
primitive sufficient conditions for the assumption made about
Mn in Theorem 4. In practice, the fact that Mn is observed
means that the conditionMn < 1/2 is verifiable, and therefore
unlessMn is found to be “close” to 1/2 there is reason to expect
�̂HC

n to perform well.

Remark 2. Our main results for linear models concern large-
sample approximations for the finite-sample distribution of the
usual t -statistics. An alternative, equally automatic approach
is to employ the bootstrap and closely related resampling pro-
cedures (see, among others, Freedman (1981), Mammen 1993;
Gonçalves and White 2005; Kline and Santos 2012). Assum-
ing Kn/n � 0, Bickel and Freedman (1983) demonstrated an
invalidity result for the bootstrap in the context of high-
dimensional linear regression. Following the recommendation
of a reviewer, we explored the numerical performance of the
standard nonparametric bootstrap in our simulation study,
where we found that indeed bootstrap validity seems to fail in
the high-dimensional settings we considered.

4.3. HCk Standard Errors withMany Covariates

The HCk variance estimators are very popular in empirical
work, and in our context are of the form �̂n(κn) with κi j,n =
1(i = j)ϒi,nM

−ξi,n
ii,n for some choice of (ϒi,n, ξi,n). See Long and

Ervin (2000) andMacKinnon (2012) for reviews. Theorem 3(b)
can be used to formulate conditions, including Kn/n → 0,

under which these estimators are consistent in the sense that

�̂n(κn) = �n + op(1), �n = 1
n

n∑
i=1

v̂i,nv̂′
i,nE

[
U 2
i,n|Xn,Wn

]
.

More generally, Theorem 3(b) shows that, if κi j,n = 1(i =
j)ϒi,nM

−ξi,n
ii,n , then

�̂n(κn) = �̄n(κn) + op(1),

�̄n(κn) = 1
n

n∑
i=1

n∑
j=1

ϒi,nM
−ξi,n
ii,n M2

i j,nv̂i,nv̂
′
i,nE[U

2
j,n|Xn,Wn].

We therefore obtain the following (mostly negative) results
about the properties of HCk estimators when Kn/n � 0; that
is, when potentially many covariates are included.
HC0: (ϒi,n, ξi,n) = (1, 0). If E[U 2

j,n|Xn,Wn] = σ 2
n , then

�̄n(κn) = �n − σ 2
n

n

n∑
i=1

(1 − Mii,n)v̂i,nv̂′
i,n ≤ �n,

with n−1∑n
i=1(1 − Mii,n)v̂i,nv̂′

i,n �= op(1) in general
(unless Kn/n → 0). Thus, �̂n(κn) = �̂EW

n is inconsistent
in general. In particular, inference based on �̂EW

n is
asymptotically liberal (even) under homoscedasticity.

HC1: (ϒi,n, ξi,n) = (n/(n − Kn), 0). If E[U 2
j,n|Xn,Wn] = σ 2

n

and if M11,n = · · · = Mnn,n, then �̄n(κn) = �n, but in
general this estimator is inconsistent when Kn/n � 0
(and so is any other scalar multiple of �̂EW

n ).
HC2: (ϒi,n, ξi,n) = (1, 1). If E[U 2

j,n|Xn,Wn] = σ 2
n , then

�̄n(κn) = �n, but in general this estimator is incon-
sistent under heteroscedasticity when Kn/n � 0. For
instance, if d = 1 and if E[U 2

j,n|Xn,Wn] = v̂2
j,n, then

�̄n(κn) − �n = 1
n

n∑
i=1

n∑
j=1

[
M2

i j,n

2
(
M−1

ii,n + M−1
j j,n
)

− 1(i = j)
]
v̂2
i,nv̂

2
j,n �= op(1)

in general (unless Kn/n → 0).
HC3: (ϒi,n, ξi,n) = (1, 2). Inference based on this estimator is

asymptotically conservative because

�̄n(κn) − �n = 1
n

n∑
i=1

n∑
j=1, j �=i

M−2
ii,nM

2
i j,nv̂i,nv̂

′
i,n

×E
[
U 2

j,n|Xn,Wn
] ≥ 0,

where n−1∑n
i=1
∑n

j=1, j �=i M
−2
ii,nM

2
i j,nv̂i,nv̂′

i,nE[U 2
j,n|Xn,

Wn] �= op(1) in general (unless Kn/n → 0).
HC4: (ϒi,n, ξi,n) = (1,min(4, nMii,n/Kn)). If M11,n = · · · =

Mnn,n = 2/3 (as occurs when T = 3 in the fixed effects
panel datamodel), thenHC4 reduces toHC3, so this esti-
mator is also inconsistent in general.

Among other things these results show that (asymptotically)
conservative inference in linear models with many covariates
(i.e., even whenK/n �→ 0) can be conducted using standard lin-
ear methods (and software), provided the HC3 standard errors
are used.
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In the numerical work reported in the following sections
and the supplemental Appendix, we present evidence compar-
ing all these variance estimators. In line with the theory, we find
that OLS-based confidence intervals employing HC3 standard
errors are conservative while our proposed variance estimator
�̂HC

n delivers confidence intervals with close-to-correct empiri-
cal coverage.

5. Simulations

We conducted a simulation study to assess the finite sample
properties of our proposed inference methods as well as those
of other standard inference methods available in the literature.
Based on the generic linear regression model (1), we consider
15 distinct data-generating processes (DGPs) motivated by the
three examples discussed previously. To conserve space, here
we only discuss results from Model 1, a representative case, but
the supplemental Appendix contains the full set of results and
further details (see Table 1 in the supplement for a synopsis of
the DGPs used).

We present results for a linear model (1) with i.i.d. data,
n = 700, d = 1 and xi,n ∼ N (0, 1), wi,n = 1(vi,n ≥ 2.5) with
vi,n ∼ N (0, I), and ui,n ∼ N (0, 1), all independent of each
other. Thus, this design considers (possibly overlapping) sparse
dummy variables entering wi,n; each column assigns a value
of 1 to approximately five units out of n = 700. We set β = 1
and γn = 0, and considered five different model dimensions:
dim(wi,n) = Kn ∈ {1, 71, 141, 211, 281}. In the supplemental

Appendix, we also present results for more sparse dummy vari-
ables in the context of one-way and two-way linear panel data
regression models, and for nonbinary covariates wi,n in both
increasing dimension linear regression settings and semipara-
metric partially linear regression settings (where γn �= 0 and
wi,n is constructed using power series expansions). Further-
more, we also considered an asymmetric and a bimodal dis-
tribution for the unobservable error terms. In all cases, the
numerical results are qualitatively similar to those discussed
herein. For each DGP, we investigated both homoscedastic as
well as (conditional on xi,n and/or wi,n) heteroscedastic mod-
els, following closely the specifications in Stock and Watson
(2008) and MacKinnon (2012). In particular, our heteroscedas-
tic model takes the form: V[ui,n|xi,n,wi,n] = κu(1 + (t(xi,n) +
ι′wi,n)

2) and V[xi,n|wi,n] = κv (1 + (ι′wi,n)
2), where the con-

stants κu and κv are chosen so that V[ui,n] = V[xi,n] = 1,
t(a) = a1(−2 ≤ a ≤ 2) + 2sgn(a)(1 − 1(−2 ≤ a ≤ 2)), and ι

denotes a conformable vector of ones.
We conducted S = 5,000 simulations to study the finite sam-

ple performance of 16 confidence intervals: eight based on a
Gaussian approximation and eight based on a bootstrap approx-
imation. Our article offers theory for Gaussian-based inference
methods, but we also included bootstrap-based inference meth-
ods for completeness (as discussed in Remark 2, the bootstrap
is invalid when Kn ∝ n in linear regression models). For each
inference method, we report both average coverage frequency
and interval length of 95% nominal confidence intervals; the lat-
ter provides a summary of efficiency/power for each inference

Table . Simulation results (model  in supplemental appendix).

Gaussian distributional approximation Bootstrap distributional approximation

HO HO HC HC HC HC HC HCK HO HO HC HC HC HC HC HCK

(a) Empirical coverage

Homoscedastic model
K/n = 0.001 . . . . . . . . . . . . . . . .
K/n = 0.101 . . . . . . . . . . . . . . . .
K/n = 0.201 . . . . . . . . . . . . . . . .
K/n = 0.301 . . . . . . . . . . . . . . . .
K/n = 0.401 . . . . . . . . . . . . . . . .
Heteroscedastic model
K/n = 0.001 . . . . . . . . . . . . . . . .
K/n = 0.101 . . . . . . . . . . . . . . . .
K/n = 0.201 . . . . . . . . . . . . . . . .
K/n = 0.301 . . . . . . . . . . . . . . . .
K/n = 0.401 . . . . . . . . . . . . . . . .

(b) Interval length

Homoscedastic model
K/n = 0.001 . . . . . . . . . . . . . . . .
K/n = 0.101 . . . . . . . . . . . . . . . .
K/n = 0.201 . . . . . . . . . . . . . . . .
K/n = 0.301 . . . . . . . . . . . . . . . .
K/n = 0.401 . . . . . . . . . . . . . . . .
Heteroscedastic model
K/n = 0.001 . . . . . . . . . . . . . . . .
K/n = 0.101 . . . . . . . . . . . . . . . .
K/n = 0.201 . . . . . . . . . . . . . . . .
K/n = 0.301 . . . . . . . . . . . . . . . .
K/n = 0.401 . . . . . . . . . . . . . . . .

NOTES: (i) DGP is Model  from the supplemental appendix, sample size is n = 700, number of bootstrap replications is B = 500, and number of simulation replications
is S = 5000; (ii) Columns HO and HO correspond to confidence intervals using homoscedasticity consistent standard errors without and with degrees of freedom
correction, respectively, columns HC–HC correspond to confidence intervals using the heteroscedasticity consistent standard errors discussed in Sections  and .,
and columns HCK correspond to confidence intervals using our proposed standard errors estimator.



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1359

method. To bemore specific, for α = 0.05, the confidence inter-
vals take the form:

I� =
⎡⎣β̂n − q−1

� (1 − α/2) ·
√

�̂n,�

n
, β̂n − q−1

� (α/2) ·
√

�̂n,�

n

⎤⎦ ,

�̂n,� = �̂−1
n �̂n,��̂

−1
n ,

where q−1
� denotes the inverse of a cumulative distribution func-

tion q�, and �̂n,� with � ∈ {HO0, HO1, HC0, HC1, HC2, HC3,
HC4, HCK} corresponds to the variance estimators discussed
in Sections 2 and 4.3. Gaussian-based methods set q� equal
to the standard normal cdf for all �, while bootstrap-based
methods are based on the nonparametric bootstrap distribu-
tional approximation to the distribution of the t-test T� = (β̂n −
β)/

√
�̂n,�/n. The empirical coverage of these 16 confidence

intervals are reported in Panel (a) of Table 1. In addition, Panel
(b) of Table 1 reports the average interval length of each con-
fidence intervals, which is computed as L� = [q−1

� (1 − α/2) −
q−1

� (α/2)] ·
√

�̂n,�/n, and thus offers a summary of finite sam-
ple power/efficiency of each inference method.

The main findings from the simulation study are in line
with our theoretical results. We find that the confidence inter-
val estimators constructed using our proposed standard errors
formula �̂HC

n , denoted HCK, offer close-to-correct empirical
coverage. The alternative heteroscedasticity consistent standard
errors currently available in the literature lead to confidence
intervals that could deliver substantial under or over coverage
depending on the design and degree of heteroscedasticity con-
sidered. We also find that inference based on HC3 standard
errors is conservative, a general asymptotic result that is for-
mally established in this article. Bootstrap-based methods seem
to perform better than their Gaussian-based counterparts, but
they never outperform our proposed Gaussian-based inference
procedure nor do they provide close-to-correct empirical cov-
erage across all cases. Finally, our proposed confidence intervals
also exhibit very good average interval length.

6. Empirical Illustration

We illustrate the different linear regression inference meth-
ods discussed in this article using a real dataset to study the
effect of ability on earnings. In particular, we employ the
dataset constructed by (Carneiro, Heckman, and Vytlacil
2011, CHV, hereafter). [The dataset is available at https://www.
aeaweb.org/articles?id=10.1257/aer.101.6.2754.]. The data
come from the 1979 National Longitudinal Survey of Youth
(NLSY79), which surveys individuals born in 1957–1964
and includes basic demographic, economic and educational
information for each individual. It also includes a well-known
proxy for ability (beyond schooling and work experience):
the Armed Forces Qualification Test (AFQT), which gives a
measure usually understood as a proxy for the “intrinsic ability”
of the respondent. This data has been used repeatedly to either
control for or estimate the effects of ability in empirical studies
in economics and other disciplines. See CHV for further details
and references.

The sample is composed of white males of ages between
28 and 34 years old in 1991, with at most 5 siblings and at
least incomplete secondary education. We split the sample into
individuals with high school dropouts and high school gradu-
ates, and individuals with college dropouts, college graduates,
and postgraduates. For each subsample, we consider the linear
regression model (1) with yi,n = log(wagesi) , where wagesi
is the log wage in 1991 of unit i, xi,n = afqti denotes the
(adjusted) standardized AFQT score for unit i, and wi,n collects
several survey, geographic and dummy variables for unit i. In
particular, wi,n includes the 14 covariates described in CHV
(Table 2, p. 2763), a dummy variable for wether the education
level was completed, eight cohort fixed effects, county fixed
effects, and cohort-county fixed effects. For our illustration,
we further restrict the sample to units in counties with at
least three survey respondents, giving a total of Kn = 122 and
n = 436 (Kn/n = 0.280; Mn = 0.422) for the high school edu-
cation subsample and Kn = 123 and n = 452 (Kn/n = 0.272;
Mn = 0.411) for the college education subsample.

The empirical findings are reported in Table 2. For high
school educated individuals, we find an estimated returns
to ability of β̂ = 0.060. The statistical significance of this
effect, however, depends on the inference method employed.
If homoscedastic consistent standard errors are used, then the
effect is statistically significant at conventional levels (p-values
are 0.010 and 0.029 for unadjusted and degrees-of-freedom
adjusted standard errors, respectively). If heteroscedasticity
consistent standard errors are used, the default method in most
empirical studies, then the statistical significance depends on

Table . Empirical application (returns to ability, afqt score).

Outcome: log(wages)

(a) Secondary education

β̂ .
Std.Err. p-value

HO . .
HO . .
HC . .
HC . .
HC . .
HC . .
HC . .
HCK . .
Kn 
n 
Kn/n .
Mn .

(B) College education

β̂ .
Std.Err. p-value

HO . .
HO . .
HC . .
HC . .
HC . .
HC . .
HC . .
HCK . .
Kn 
n 
Kn/n .
Mn .

https://www.aeaweb.org/articles?id=10.1257/aer.101.6.2754
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the which inference method is used; see Section 4.3. In par-
ticular, HC0 also gives a statistically significant result (p-value
is 0.020), while HC1 and HC2 deliver marginal significance
(both p-values are 0.048). On the other hand, HC3 and HC4
give p-values of 0.092 and 0.122, respectively, and hence suggest
that the point estimate is not statistically distinguishable from
zero. Finally, our proposed standard error, HCK, gives a p-value
of 0.058, also making β̂ = 0.060 statistically insignificant at
the conventional 5% level. In contrast, for college educated
individuals, we find an effect of β̂ = 0.091, and all inference
methods indicate that this estimated returns to ability is statis-
tically significant at conventional levels. In particular, HC3 and
our proposed standard errors HCK give p-values of 0.037 and
0.017, respectively.

This illustrative empirical application showcases the role of
our proposed inference method for empirical work employing
linear regression with possibly many covariates; in this appli-
cation, Kn large relative to n is quite natural due to the pres-
ence of many county and cohort fixed effects (i.e., Kn/n ≈ 0.3
in this empirical illustration). Specifically, when studying the
effect of ability on earnings for high school educated individuals,
the statistical significance of the results crucially depend on the
inference method used: as predicted by our theoretical findings,
inference methods that are not robust to the inclusion of many
covariates tend to deliver statistically significant results, while
methods that are robust (HC3 is asymptotically conservative and
HCK is asymptotically correct) do not deliver statistically sig-
nificant results, giving an example, where the empirical conclu-
sion may change depending on whether the presence of many
covariates is taken into account when conducting inference. In
contrast, the empirical findings for college educated individuals
appear to be statistically significant and robust across all infer-
ence methods.

7. Conclusion

We established asymptotic normality of the OLS estimator of
a subset of coefficients in high-dimensional linear regression
models with many nuisance covariates, and investigated the
properties of several popular heteroscedasticity-robust standard
error estimators in this high-dimensional context. We showed
that none of the usual formulas deliver consistent standard
errors when the number of covariates is not a vanishing propor-
tion of the sample size. We also proposed a new standard error
formula that is consistent under (conditional) heteroscedastic-
ity and many covariates, which is fully automatic and does not
assume a restrictive, special structure on the regressors.

Our results concern high-dimensional models where the
number of covariates is at most a nonvanishing fraction of the
sample size. A quite recent related literature concerns ultra-
high-dimensional models where the number of covariates is
much larger than the sample size, but some form of (approxi-
mate) sparsity is imposed in themodel; see, for example, Belloni,
Chernozhukov, and Hansen (2014), Farrell (2015), Belloni et al.
(2017), and references therein. In that setting, inference is
conducted after covariate selection, where the resulting number
of selected covariates is at most a vanishing fraction of the
sample size (usually much smaller). An implication of the

results obtained in this article is that the latter assumption
cannot be dropped if post-covariate-selection inference is
based on conventional standard errors. It would therefore be
of interest to investigate whether the methods proposed herein
can be applied also for inference post-covariate-selection in
ultra-high-dimensional settings, which would allow for weaker
forms of sparsity because more covariates could be selected for
inference.

Supplement Materials
The supplemental appendix gives proofs of the main theorems presented in
the article, contains other related technical results that may be of indepen-
dent interest, discusses specific examples of linear regression models cov-
ered by our general framework, and reports complete results from a simu-
lation study.
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