Supplement to “Managing Procurement Auction Failure:

Bid Requirements or Reserve Prices?”

Jun Ma* Vadim Marmer’ Pai Xut

This supplement collects the econometric details omitted from the main text. Section S1 provides
a more detailed introduction to our econometric results and an extensive review of the related
econometric and statistical literature. Section S2 provides details about the generalized method of
moments (GMM) estimation method used in the main text. Section S3 discusses the asymptotic
normality property of the GMM estimator (Proposition S2). Section S4 discusses the bootstrap
method to estimate the asymptotic variance and shows its consistency (Proposition S3). Appendix
A gives the important ancillary results which are of independent interest and their proofs. Appendix

B collects the proofs of the main results (Propositions S1, S2 and S3).

Notation. For any m € N, denote [m] := {1,...,m}. For a finite set A, let |A| denote the
number of elements in A. Let 1,, (0,,) denote an m-dimensional vector whose elements are all one

(zero). Let I,, denote the m-dimensional identity matrix.

S1 Introduction and related literature

In this paper, we develop a complete theory for the identification and estimation of the semiparamet-
ric model discussed in the conclusion section of Gentry and Li (2014), which has not been studied
in the literature, to the best of our knowledge.! We derive testable sufficient conditions that ensure
(semiparametric) local and global identification of the copula parameter in the sense of Lewbel (2019)
and present them in Proposition 3.3 in the main text. Chen et al. (2025) considers the first-price
auction model with both endogenous entry and risk aversion under a parametric assumption on the
copula function for the signal and the private value. They show that the utility function and the
distribution of private values are nonparametrically identified conditional on the copula parameter,

which can be set identified. In our paper, we study the point (global) identification of the copula
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parameter, and its limited form (local identification), under the risk neutrality assumption and the
parametric assumption on the copula function. Chen et al. (2025) also show that the utility function
is nonparametrically identified if there is sufficient variation in the observed instruments and num-
ber of potential bidders. They also show parametric identification of the utility function. In either
case, as a consequence, the distribution of the private values conditional on entry is nonparametri-
cally identified. Adaptation of our identification results provides testable sufficient conditions that
ensure (local or global) identification of the copula parameter, in the semiparametric model with

endogenous entry, risk aversion and a parametric assumption on the copula function.

We propose a convenient and practical generalized method of moments (GMM) estimator and
develop its first-order asymptotic theory. Several intermediate results are of independent interest.
Our semiparametric GMM estimation uses the empirical CDF of pseudo values constructed by using
a nonparametrically estimated inverse bidding strategy. Guerre et al. (2000) proposes kernel density
estimation using these pseudo values. Ma et al. (2019) derives the first-order asymptotic theory of

2 The asymptotic properties of the pseudo-value-based

the pseudo-value-based density estimator.
cumulative distribution function (CDF) estimator have not been studied in the literature to the
best of our knowledge. The econometric theory derived in this paper complements Ma et al. (2019)
and fills the void by providing the first-order asymptotic properties for the pseudo-value-based CDF
estimator. Our proof is also different from that of Ma et al. (2019). Recently, Zincenko (2024)
studies estimation and inference of seller’s expected revenue in high-bid first-price auctions. They
derive the asymptotic linearization of a pseudo-value-based CDF estimator. However, Zincenko
(2024) uses a kernel-smoothed bid CDF estimator in their estimated inverse bidding strategy for
constructing the pseudo values. The pseudo values in Guerre et al. (2000) and Ma et al. (2019) are
built from using the empirical CDF of the bids without kernel smoothing. This paper follows Guerre
et al. (2000) and Ma et al. (2019) since the empirical CDF incurs no smoothing bias. We show that

our estimator admits a desired asymptotic linearization by using a proof completely different from
Zincenko (2024)’s.

Estimating the inverse bidding strategy requires plugging in a nonparametric estimator of the
compactly supported bid density. The standard kernel density estimator suffers from boundary bias.
Either trimming (Guerre et al., 2000) or boundary bias correction (see, e.g., Hickman and Hubbard,
2015 or Ma et al., 2021) has been used to address the issue. Boundary correction for kernel density
estimators has received much attention in the statistical literature. In this paper, we follow Ma et al.
(2021) to use the boundary adaptive local linear density estimator (Lejeune and Sarda, 1992 and
Jones, 1993). One of the advantages of the local linear density estimator is that it does not require
selecting additional tuning parameters. The local linear density estimator has received attention in
the statistical literature (see, e.g., Cheng et al., 1997 and Chen and Huang, 2007). To the best of
our knowledge, the uniform convergence property (over the entire support) of this estimator has not

been derived in the literature. In this paper, we derive concentration bounds for the more general

2See Marmer and Shneyerov (2012) for another estimation method without using the estimated inverse bidding
strategy and calculating the pseudo values.
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local polynomial (LP) density estimators (Bickel and Doksum, 2015, Chapter 11.3), and also its first
and second derivatives, which extend the classical concentration results for kernel density estimators
(Giné and Guillou, 2002). Our new results give the uniform rate of convergence of the LP density
estimator over the entire support. These results are also useful in other semiparametric estimation

problems which involve compactly supported density functions as nuisance parameters.

The optimal weight matrix of the semiparametric GMM estimator depends on the asymptotic
variance of the pseudo-value-based CDF estimator, which takes a complicated form. By using
bootstrap, we avoid direct estimation of the asymptotic variance. We show that our bootstrap
variance estimator consistently estimates the asymptotic variance of the pseudo-value-based CDF
estimator.> The proof hinges on the concentration bounds for the local linear density estimator

derived in Appendix A.

S2 Generalized method of moments estimation

Let
N*
n = BE|=L|N =
q [Nl| I n}
N*
B E[]l(Nl:n)T’l}
E[L(Ny=n)] ~

where the second equality follows from LIE, and then we have ¢, = ¢, (p,). The sample analogue

of g, is thus given by

1
n i = ——— N/, S1
n|{l:N1:n}|H§n ! (S1)

Let pp == ¢, 1 (§n). A consistent estimator of G (b | n) is

N*
_ D N=n 2oita L(Ba < b)
Zl:Nl:TL Nl*

Let b, = 3(T | pp,n) and b,, := B (v | pn,n) denote the boundary points. Let

G(b|n):

(52)

[=alb}

n = max{By:i=1,...,N/, Ny =n}
= min{By:i=1,..,N/,N; =n}

1S

1

3The bootstrap variance estimator may overestimate the asymptotic variance asymptotically, even when the con-
sistency of the bootstrap distribution can be established. See Hahn and Liao (2021) for examples and general theory.
Our consistency result excludes such possibility in our specific context. Ma et al. (2019) shows consistency of the boot-
strap distribution for the pseudo-value-based density estimator. Their result does not directly imply the consistency
of our bootstrap variance estimator.
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be the estimated boundary points. The local-linear-type boundary adaptive kernel density estimator

of g(b|n)is )

> LN=n Zivzl*l K1 (Bu, b h75n75n>
Zl:Nl:n Ny ’

where the function K7 is defined in Appendix A. Then we construct the nonparametric estimator

gb|n):= (S3)

€ (- | n) of the inverse bidding function & (- | p,, n).

In practical estimation of the copula parameter, we consider finitely many grid points v1 < -+ <

vy in (v,). Then we have a finite set of restrictions
F* (Uj ‘ pn) =C (F (U]) 7pn;90) /pn7 for (]7 TL) € {17 ceey J} X N7 (84)

for the J + 1 parameters (6p, F' (v1),..., F (vs)). Let M := |[N| and let ny < ng < -+ < nyps be the

elements of /. Write the equations as
Q@ (F* (vj | pny)  onyi00) = F'(v5) , for (4, k) € [J] x [M]. (S5)
For @ = (1, ...,xM)T and y = (y1, ...,yM)T, denote

Q (x1,y150)
Q(x,y;0) = ;
Q (za,yn: 0)

Denote Fy = (F (vl),...,F(vJ))T, Py = (pm,...,pnM)T, F5 o= (F* (vj | pny) s oos F* (v ]pnM))T
for j € [J], and F* := (F’{T,...,F}T)T. For z = (aclT,...,ac})T € R'M  denote

Q (z1,y:0)
¥ (zy,0) = : : (S6)
Q(zs,y;0)
(S5) can be written in a vector form as
¥ (F*,py,b0) = (I; @ 1) Fo. (S7)

~

* ~ A~ T . A~ %
Let p = (pm,...,pnM)T, F; = <F* (Vj | Pry) s ¥ (v |pnM)) for j € [J], and F =

A% ~xT\ |
(Fl R > . Let W € RMI*XMJ he o weight matrix and F = (F, ...,FJ)T. Let

F = {(Fl,...,FJ)T 0,1 F<F<-- < FJ}.
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The GMM criterion function is
~ N T ko
D6, F; W) = (w <F ,p,e) (Ly® 1M)F> w <sp (F ,p,9> (L ® 1M)F) .

The GMM estimator is defined by

<§(W) F (W)) = argmin D (0, F; W) . (S8)
(6,F)€OXF

To solve the minimization problem in (S8), we can easily partial out F' given fixed 6. This requires

solving a quadratic programming under linear inequality constraints. Let

F(0; W) := argmin D (6, F; W).. (S9)
FcF

Then, after partialling out F', we can calculate the GMM estimator

(W) = arg min (w (ﬁ’*,f), 9) —(Ly® 1) F (6; W))T W (w (ﬁ’*,f), 9) —(Ly® 1) F (6; W))

by one-dimensional grid search.

We now consider a useful special case. The first-order conditions corresponding to the uncon-

strained quadratic programming problem min FeRJﬁ (0, F; W) are
2Ly @ 1y) WP (ﬁ*,ﬁﬁ) Y 2Ly @ 1) W(Ly@1y) F = 0.

In case of W =1, since (I; ® 1M)T (Iy®1py)=M - -1I;and

~ %

1,,Q (Fiﬁ; 9)
(Ly@1y) @ (F ,ﬁ,e) _ :

Y

11,Q (ff},ﬁ; 0)

the minimizer corresponding to the unconstrained problem min FeRJl/j (0, F;1,5) is given by

~ %

(et @enn) Mo @ (F5.0) = s S s0)

Since ILQ <1A*">1k,f)7 9) < - <L ILQ (ﬁ’;,f), 9), the unconstrained minimizer satisfies the linear
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inequality constraints in (S9). Therefore, F (6;157;) has a close form solution

17,Q(F1.p:0)
R M
IXIQ(ﬁ‘jvf’ﬂ)
—

since it must coincide with the unconstrained minimizer.

S3 Asymptotic normality

First, we show the asymptotic normality of the pseudo-value-based CDF estimator. We assume that
the following assumption on the data-generating process holds, in addition to Assumptions 2.1 and
3.2 in the main text. Let f = F”’ be the density of the marginal distribution of the private costs.
Let Cy (z,y) == 0C (z,y) /Ox.

Assumption S1. (a) f is twice continuously differentiable and bounded away from zero on [v,T].
(b) C1(+,y) is bounded away from zero for all y € (0,1).

Since

Assumption S1(b) guarantees that f* (- | p,) also satisfies the assumption in Assumption S1(a). If
C(+,-) is an Archimedean copula with a twice differentiable strict generator ¢ : [0, 1] — [0, co] with
¢ (u) < 0 and ¢ (u) > 0 for u € (0,1), ¢ (1) = 0 and ¢ (0) = oo (see Nelsen, 2006, Chapter 4.1
for more details about the class of Archimedean copulas). Note that under these requirements, the
one-sided derivative ¢’ (1) exists and ¢’ (1) < 0.4 Then, it is easy to check that 9*C (z,y) /02 <0

and therefore, C (-, y) is non-increasing and

¢’ (1)
¢ (y)

lim €y (1, y) =

Then, in this case, Assumption S1(b) is fulfilled if ¢’ (1) < 0.

We also require that the following mild condition on the kernel function K (-) used in the defi-
nition of (S3) holds.

Assumption S2. The kernel function K (-) is symmetric, compactly supported on [—1,1] and twice

continuously differentiable on R.

We state the asymptotic normality result in the following proposition. Let 5’ (- | pn,n) denote
the derivative of 3 (- | pn,n) and let ¢” (- | n) denote the second derivative of g (- | n).

“Since ¢ (u) > 0 for u € (0,1), ¢’ is non-decreasing on (0, 1). Tt follows that lim,1¢’ (u) = sup {¢’ (u) : u € (0,1)}
and lim,+1¢" (u) < 0. Therefore, by the mean value theorem, ¢’ (1) exists and equals lim,4+1¢’ (u).
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Proposition S1. Assume that Assumptions 2.1 and 3.2 in the main text and Assumptions S1 and

S2 hold. Assume that the bandwidth h is chosen to be proportional to L= with 1/5 < ~ < 1/3.
Then we have the following results. (a) We have

m(ﬁ*(v\pn)—F*(v | pa) —Z (v | n) </K(u)u2du> h2> —>dN<0,2(v\n)/K2(u)du.>,

where
S(w|n) = N (Pns G (B [ prsn) [ ) B" (v ] prsn) g (B (v [ pnsn) | n)
2(n—=1)g(B(v|pn.n)|n)
S|n) = MEaCEE]pnn)|[n) @ ©lpwnn)’

(n—1%g(B v |pn,n),n)

(b) Let ;= (2 (vj | n1),..., 2 (vj | nar))"
following joint asymptotic normality result:

JE(ﬁ*—F*—E(/K(u)u?du) h2> —>dN<O,2/K2(u)du>,

where 3 is a diagonal matrixz with (ET,Z;, .,Z})T

and E; = (2 (vj | n1),....= (vj | na))'. We have the

. being the diagonal elements and Z =
=1 =1 =T\
(‘—'2 ) =2 7"'7‘—'J) .
Let
0¥ (z,y,0
WO (Z7y70) %
0¥ (z,y,0
Wl (Z7y7 0) %

denote the partial derivatives. The asymptotic theory of our GMM estimator is similar to that
of the local GMM estimator studied in Lewbel (2007). Denote 9 = (H,FT)T, Vg = (HO,FS—)T,
~ ~ ~ T
9 (W) = (9 (W), F (W)T) and write

T(Z7y7’l9) ::!p(zayae) - (IJ®1M)F

Then, (S7) can be represented more compactly as

r (F*7p07190) = 0y,
and the estimator 9 (W) can be represented as

9 (W) = argmin D (9; W),
YeOXF
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where

D@:W)=1" (ﬁ*,fa, 0) \\as (F*,ﬁ, 19) .
We say that 0 is globally identified from the finite set of restrictions if the system of equations
T(F*,po,’ﬂ) :OJM (Sll)

has a unique solution at ¥ = 9. By similar arguments, 6y is globally identified from the finite set

of restrictions under a similar but stronger condition: for some k,l € [M] and j € [J],

0
5%1({)1% (Q (F* (Uj ’pnk) 7pnk;9) - Q(F* (Uj ’pnl) 7pm;9)) > 0. (812)

Similarly, 6 is locally identified from the finite set of restrictions if there exists an open neighborhood
around fy such that for any 6 # 6 in the neighborhood and (Fi,...,F;) € [0,1]7 that satisfy
F, < F, <--- < Fy, (0,F,...,Fy) cannot be a solution to (S11). The condition in Proposition
3.3(b) guarantees that there must exist some v € [v,7] so that 6y is locally identified from the

restrictions

F*(v|pn) =C(F(v),pn;00) /pn, n €N.

We make the following mild assumption on the parametric copula family {C'(-,-;0): 0 € ©}.
It is satisfied by most commonly used parametric copula families (e.g., Gaussian, Ali-Mikhail-Haq,
Clayton, Frank, Gumbel, and Joe). Let Cy (z,y;0) == 0C (z,y;0) /0x, Cy (x,y;0) == 0C (z,y;0) /Oy
and Cy (z,y;0) = 0C (x,y;0) /06.

Assumption S3. For all e € (0,1/2), Cy (x,y;0) > 0 for all (x,y,0) € (0,1) x [¢,1 — €] x O.

Under Assumption S3, C (-, y;6) /y is strictly increasing on [0, 1] and therefore, @ (-,y;0) is also

strictly increasing on [0, 1]. Then we have

0<Q(ey;0) <Q(z,y;0) Q1 —ey;0) <1, (S13)
for all (z,y,0) € [e,1 — €]* x ©. Since we can write

C(Q(x,y:0),y;0)
y

—xz =0,

by (S13) and the implicit function theorem, @ (-, -;-) is continuously differentiable on [e, 1 — 6]2 x O.
Let Wy := ¥y (F*,py,00), Yo := Py (F*,py,0) and Qy = ¥1X¥;. Clearly, ¥; and Q are

both diagonal matrices. Let

aT (F*,po, 19()) _

I, =
0 907

g —(I;®1y) ]
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Note that the second equality shows that ITy has full rank under the condition (S12). Denote

Ey (W) = —(HOTWHO> ‘W, =

T R T -1
Sy (W) = (HOWH0> 1] WQ,WII, (HO WHO) .

By using Proposition S1 and standard arguments in the proof of consistency and asymptotic nor-
mality of M-estimators (e.g., Hansen, Chapter 22), we show that the GMM estimator is consistent

and asymptotically normal.

Proposition S2. Assume that the conditions in the statement of Proposition S1 are satisfied. Also
assume that Assumption 3.1 in the main text is satisfied. Assume that W —p Wy for some deter-
ministic positive definite matric Wq. Assume that 9 is in the interior of © X F, Il has full rank
and (S11) has a unique solution at 9 = V. Also assume that Assumption S3 is satisfied. Then we
have the following results. (a) 9 <\/7\\/'> —p Yo. (b)

VLh <q§ (\/7\7) — 9y — By (W) </K(u) u2du> h2> NN (0, g (Wo) /K2 (1) du> .

It then follows from standard calculation (e.g., Hansen, 2022, Theorem 13.5) that 3y (W) —
pIX (Qg 1) is positive semidefinite and the optimal weight matrix is given by €2 L

S4 Bootstrap estimation of the optimal weight matrix

Estimation of the optimal weight matrix €2 ! requires estimating 3 (v | n), which takes a complicated

form and depends on the derivative 8’ (v | p,,n). We propose a convenient nonparametric bootstrap

t AR
{(Bll,...,BNl*Tl,Nl ,Nl> e [L]}

be the nonparametric bootstrap sample drawn with replacement from

estimator of ¥ (v | n). Let

{(Bu, ...,BN;«l,Nl*,Nl) e [L]}. (S14)

Let E; [] and Vary [-] denote the conditional expectation and variance given (S14).

Let

~

Gi(bn) = % ' 1(B] <b)



N7 R
I:Nf=n =1

It is easy to check that E; [CA}T (b, n)] =G (b,n). Let

1 *
Moo= 2 N
l:Nszn
. 1 X
Tn = E Z Nl
I:N;=n
1 L
~ *\ 2 oy
U%,n = E Z (Nl) _ng
l:Nl:n
. ~ ~ A 2-log (L
TIL = r}fv\/<7‘n—ar7n 75( )>,

CA?T (b|n):= CA?T (b,n) /7, and gi (b n):=g;(b,n) /7. Then let p, = ¢! <Ej;ﬂ> and let

i (P, G (b | )
(n =13 (b1 n)

E(b|n)=b—

be the bootstrap analogue of & (b | n) and let XA/J = ET (le | N;). Then let

N7
By (v,n) = % DI (VJ < v) (S15)
I:Nj=n =1

be the bootstrap analogue of F* (v,n). Let ﬁlr* (v|pn) = ﬁT* (v,n) /?IL

Proposition S3. Suppose that the assumptions in the statement of Proposition S2 are satisfied.
Then, for all (4,k) € [J] x [M],

Var; [1?1[* (vj | pnk)}

2 (v | ) / (Lh)

—p 1

Let 0 := é\(ImJ) be the preliminary estimator. Let U, =, (ﬁ*,ﬁ, 5) and let 2 be the diagonal

T T T\ T
matrix with <21 1D P ZJ) € R/M heing the diagonal elements, where

E'j = (Lh) (VarT [ﬁf‘ (vj |pm)} ey Vary [ﬁf* (v; |pnM)]>T

~A A~ \—1
The estimated optimal weight matrix is given by (lIll E\Ill> .
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Appendix

Notation. For any function f : A — R, let ||f||, == sup,c4 |f (z)|. For a univariate function f,
denote fU) (2) := (d/dx)? f (x). For a bivariate function f, denote D; f (z,y) == 0f (z,y) /dx and
Dyf (x,y) == 0f (x,y) /Oy. For a symmetric matrix A, let mineig (A) denote its smallest eigenvalue.
Let [a + b] be shorthand notation for the interval [a — b, a 4 b]. “a =: b” is understood as “b is defined
by a.”. We write a < b if a < C'- b for some positive constant C' that does not depend on the sample
size L. Let ||| denote the Euclidean norm of a real vector &. For a matrix A, ||A] is understood
as the operator norm of A. “Law of iterated expectations” is abbreviated as “LIE”. “First-order
conditions” is abbreviated as “FOCs”. “With probability approaching one” is abbreviated as “wpal”.

“Law of iterated expectations” is abbreviated as “LIE”.

Let § denote a class of R-valued functions defined on a compact set S in a finite-dimensional
Euclidean space. Let § be equipped with a norm ||-||. We say that a finite subset §° of § is an
e-net if the union of the closed |[|-||-balls of radius e centered at points in §° covers §. N (&, F, ||-||) ==
inf {|F°| : §° is an e-net of F} is called the e-covering number. A function F': S — R is an envelope
of § if supsez [f| < F. We say that § is a (uniform) Vapnik-Chervonenkis-type (VC-type) class
with respect to the envelope F (see, e.g., Giné and Nickl 2015, Definition 3.6.10) if there exist some
positive constants (A, V') that are independent of the sample size such that for all € € (0, 1],

A \%
N F . < | — S16
s (1Flgs 5. 02) < (£) (s16)

where Q denotes the collection of all finitely discrete probability measures on S and || f HQ72 =

/[ F2dQ.

Appendix A Concentration analysis of the local polynomial density

estimator

Let Xi,..., X, be an ii.d. sample where X; has a bounded PDF f supported on X := [z,7]. For

some p € N, let r,, (t) :== (1,¢t, )T K, (t) =7, (t)K (t), Ry (t) =17y, (t)7) (t) and

W, (z | hz,T) = /h R, (t) K () dt
&

X; —
K (Xoa [ ) = o Wy (o[ o) Ky (S0,

where e; := (1,0, ..., 0)T € RPH1 Tt is easy to see that when h is sufficiently small,

sup W, (2| h,z, )| < <mineig </01Rp (t) K (t) dt>>_1 = . (S17)
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The local polynomial density estimator of f is
~ 1 & _
f(x) = n_h;@, (Xi,z | h,2,7). (S18)

In practice, the boundary points x and T are unknown. However, validity of the first-order asymptotic
results derived in this section is unaffected if we replace the unknown x and T with their super-
consistent estimators min { X7, Xo, ..., X, } and max {X7, Xo,..., X;,}. Let f’ and f" be the first and

second derivatives of f.

Denote
dKp(t)  drp(t)

dt - dt
and K7 (t) .= d’ K, (t) /dt*. 1t is easy to check that

K, (t) = K (t)+m7,(t)K'(t)

d _ 1 _
%Wp (z ‘ h,z,T) = EDP (z ‘ h,z,T), (S19)

Dyte )= (5 (557 o (357) ¢ (557)

and sup,cy [|Dp (x| h,2,T)|| < oo, since K (-) is compactly supported on [—1,1]. By this result,

where

the product rule and

d . _ _ _. d _ _ _
W, @ | bz ®) = W (2| bz, T) =Wy (2| bz, ) W (2] hoz,T),  (S20)
we have 5 )
%Kp (XZ7'Z' ’ h7£7f) = E’Cp (Xluw ‘ h7£7f)7
where
. X; —
Ky (Xi,x | h,z,T) = —eIW;l (a:]h,g,f)Ké( - :E)

el Wy (o | bz ) Dy (o | hoz ) Wy o | ) K, (4 )

Then we have

N 1 < .
/ _ i —
fl(@) = — ;/cp (Xi,2 | h,z,7). (S22)
1=
It is easy to see that for some matrix S, (z | h, z,T),

9D (e hor7) =

N 8y (@ | hy2,7)

SRS
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and sup,ey ||Sp (x| h,2,7)|| < co. By (S19), (S20) and the product rule,

82

1
52 =Ky (Xivw | b2, 7),

—Kp (Xi,z | h,z,T) = e

where

. X; —
Ky (Xi,x | h,z,T) —e1W (x\hg,f)]{éi( - £E>

X, -
+ 2. e1W (m]h,g,E)Dp(x\h,g,f)W;Wx\h,g,f)Ké( hx)

+2. e1W (3: | h,z,Z) Dy (z | h,g,E)ng

X; —
($|h7£7§)DP($|h7£7§)w;;1($|h7£75)K10< h :E>

X; —
—e1W (a:]h,g,f)sp(x\h,g,f)W;l(x\h,g,E)Kp< hx>.

Then we have

1 <. .
f”(x) = WZKP(XH‘% ‘ h7gvf)'
=1

Let f(z) = [J?( )] f(z) =E [f' (a:)] and f' (z) = E [f” (a:)] We have the following results

on the bias f (x) — f (x) and its first and second derivatives.

Proposition A.1. Assume that f is (p + 1)-times continuously differentiable on [z,T] and h | 0 as
n 1 oo. Assume that the kernel function K (-) satisfies Assumption S2. Then we have the following

results. (a)

flx)=f(z)+ <e1TW;1 (x| h,z,T) /”“‘hz K, (u) upHdu) f((p _; 1() )hp+1 +o (R,
uniformly inx € X. (b) F (z) = f' () +O (hP), uniformly inz € X; (¢) F (x) = f" (z)+O (hP—1),

uniformly in x € X.

Proof of Proposition A.1. Denote ¢ (z) = (f© (z) /0!, 1) (z) /11, ..., fP) (2) /p!)T. Let H be
the (p + 1)-dimensional diagonal matrix with diagonal elements (1, h, . hp ) By change of variables

and Taylor expansion,

T = oWy el naa) [ (U) fwd

L o J# (@) ()
_ eIWpl(ﬂi | h,z,7) /:chz » (u) {rp (u)T Ho (x) + o+ 1) }du,

where & denotes the mean value that lies between = and x + hu. The conclusion in Part (a) follows

from this result.
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Now by (S21), (S22), integration by parts and tedious algebra, we have

e = [ el W el han K, (S o

1 — 1 T—1x) =
+Ee1TW;;1 (x| h,z,7T) K, <%> I(z)— EelTng (x| h,z,T) K, <:E :E) I(z),

where

1) =} (55 Wt e [ 1m0, (L) F 0 dy

and I () is defined similarly. By Taylor expansion,

10 = f-r (5 W wlnem [ iR (U0 s
= f@ - @) o

r—x 7 (p+1) i u p+1
. (— - >W];1 (z | h,z,T) /_u K, (u) f (p(+) Y)l' ) du, (s24)

h

where # denotes the mean value that lies between x and x + hu. Since

K (55| 2 1ta-al <), (525)
by this result, (S17) and Taylor expansion,

1 T —T

EeIW;l (z | h,z,T) K, <— - ) {f@) —-r, (z—:v)cb(:c)} =0 (h"),

uniformly in z € X. By this result, (S17) and (S24),

1 _ . T —x

hel Wy (o o) Ky (555 ) 1) = 0 07), (s26)
uniformly in x € X. Similarly,

1 _ _ T—x)\ =

pel Wy (o o) Ky (D) T = 0.00), (s27)

uniformly in z € X'. By Taylor expansion and (S17),

1 _ _ Yy—x
[ el Wyt K (U0) 1 )

T—
h
—x

= eIW;l (z | h,g,f)/

z

h

. o {rp ()T He' (z) + FEHD () (hu)? } "

p!
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= f(@)+0(n"),

uniformly in x € X, where ¢’ (z) == (f(l) (z) /0!, FP) (z) /1), .., fP) (2) / (p — 1)!,0)T and 7 is the
mean value that lies between x and = + hu. The conclusion in Part (b) follows from this result,
(S23), (S26) and (S27).

For Part (c), first note that we can write

d [* y—x
f”(:n) - - : —e; W, (:E|hl’$)Kp< - >f'(y)dy
1d - x—T 1d T—x
+—%elwp (x]hxa:)Kp< - )l(w)——%elwp (x\hxx)Kp< - )I(x)
(S28)
By integration by parts and (S20)
_/ Y@ | ha,7) K, <y;$> ' (y) dy
y—z "
= [ gelw, <a:rhm>Kp< . )f<y>dy
+he1W (x\h,g,E)Kp<£;x>l(x) EeIW (x\h,g,f)Kp<x;$>7(x),
(S29)

where

. T—x _ ("1 -
o) =1 @ -} (55 ) W) [ 1 (L) £y
and T(a:) is defined similarly. By Taylor expansion and (S17),

- )
[ oW e K, () 5 ) dy

= elTng (x| h,z,T) ﬁ“—;f K, (u) {rp (v)" He' (z) + FPY (&) (hu)P~ }du

xT

(p—1)!
= @)+ 0 (W),

uniformly in z € X, where ¢ (z) = (f(z) (z) /0!, FO) (z) /11, ., fP) (2) / (p — 2)!,0,0)—r and 7 is
the mean value that lies between z and x + hu. By using arguments similar to those used in the
proof of (S26) (Taylor expansion, (S17) and (S25)), we have

1 Tr—x

Fel W, (o bz Ky (£55) 1) = 0 (107).
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uniformly in x € X. Similarly,

1 T — -
Eelw Yz | h27) K, (xhx>l(gj):O(hp—1),
uniformly in z € X'. By these results and (S29),
d _ Yy—x / e p—1
. h 1W Yo | hz,7) K, - f'y)dy=f"(x)+0 (W"7). (S30)

By Taylor expansion with remainder terms written in their integral forms,

- @-now= [ L

and

T [T E-t)
Tw = [ S 7
()W [
By calculations,
/ K {/x+huf(p+l)()(x+hu }
T T _A\P
= —ng <$h$>/ ) ()( o )dt+hK <£h$>/ £ () (&p!t) it

pl T z+hu T w— p—1
. / K, hupdu—i—/ K, (u ){/x Fe+y) (t)( +(Z_1)t!) dt}du.

By these results, (S17), (S20), and

K, () { / T e (g wdt} du.

p!

AN

N\ l

17 — | < )

L[z -z <h),

we have _
T—

;,lldd TW (ﬂf‘haLT)Kp< >T(x):O(hp_1),

uniformly in z € X. A similar result holds for the second term on the right hand side of (S29). The
conclusion in Part (c) follows from these results, (S28) and (S30). [
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Consider

R = {L (x| hzT):xeiX}
o = supE [IC?, (Xi,x | h,g,f)] .
TEX
Let (ﬁ, aé) and (ﬁ, 0:2&) be defined similarly. By change of variables and (S17), 0% = O (h).
Similarly, 0’% Y Ué = O (h). Let K; (t) == /K (t) and cx = sup;epK (t). It follows from Giné and
Nickl (2015, Proposition 3.6.12) that for all j =0, 1,...,p,

{tr—>Kj<t_Tx>:x€X,b>0}

is VC-type with respect to the constant envelope cx. By (S17), Giné and Guillou (1999, Lemma
3 (b,c)) and Chernozhukov et al. (2014, Corollary A.1(i)), K is also VC-type with respect to the
constant envelope Fig = (p + 1) wpck, where @), is defined in (S17). By similar arguments, £ and

R are also VC-type with respect to some constant envelopes F; and Fl;.

Proposition A.2. Assume that the assumptions in the statement of Proposition A.1 are satisfied.
Assume that \/|log (h)|/(nh) L 0 as n T co. Then we have the following results. (a) There exist

some positive constants ci, ca,cs which depend only on K (-), such that, for all n sufficiently large,

Pr [HJ?—THX > 6} < -exp (—02 : %) (S31)

o log (2n=1/2) 3
— V F — 2 <e< =
" <\/E ﬁ) nh =T

5
(b) There exists positive constants ¢y, ¢, ¢ which depend only on K (-), such that, for alln sufficiently
large,

(nh3) €2

il (o2/0) v 72

f/ —THX > e] < c’l - exp —6/2 .

o log (2h—1/2)
0/3 <ﬁ vV Fﬁ> T <e

(¢) There exists positive constants ¢, c4y, 4 which depend only on

s RS

(), such that, for all n suffi-
ciently large,
(nh®) €2

m CONE:

P

X>e] < -exp|—cj-
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Ty )y ) 4
cg<\/EvFﬁ> e _e_2h2.

Proof of Proposition A.2. We apply Giné and Guillou (2002, Corollary 2.2) with F = R, 0 =
og V (Fg\/ﬁ) and U = 2Fg. Note that log (U/o) < log (2h~/2) and /no > v/nhFy under these

definitions. Therefore, we have

U, [log <g> < 2Fgy/log (2h~=1/2) < VnhFg < /no,
\/ o

when n is sufficiently large so that \/Iog (2h=1/2) / (nh) < 1/2. Therefore, Condition (2.5) in the
statement of Giné and Guillou (2002, Corollary 2.2) is satisfied. Note that ¢/ (Uh) > 1/2 and

N Jh

n

m@@ﬁ<@w%@)mmwtﬁ<mwu

Therefore, when n is sufficiently large,

2

U
Vnoy [log (—) <7
o U

The conclusion in Part (a) follows from applying Giné and Guillou (2002, Corollary 2.2). The

conclusions in Part (b) and Part (c) follow from the same arguments. |

Corollary A.1. Assume that the assumptions in the statement of Proposition A.2 are satisfied.

Then we have the following results. (a) There exists some M > 0 such that

P |77, > ar (22 v ) 2B —o0 .

Vh

b) There exists some M’ > 0 such that
(

Pr ‘f'—?

>M (2R v F,
pY N/
(c) There exists some M" > 0 such that

e |77

M E\/F
v <\/E :

Proof of Corollary A.1. For all C > 1, C ((ag/\/ﬁ) Y Fﬁ) \/log (2h=1/2) / (nh) < 1/2 if n is
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sufficiently large. Therefore, for e = Ces ((O’ﬁ/\/ﬁ) Y Fg) \/log (2h=1/2) / (nh), (S31) holds if n is
sufficiently large. And it is easy to see that the right hand side of (S31) is O (n_l) if C' is taken to

be sufficiently large. The conclusions in Part (b) and Part (c) follow from similar arguments. |

Let {XI, ey X:L} be a nonparametric bootstrap sample from {X7, ..., X, }. Let ﬁ () be defined

by the right hand side of (S18) with X replaced by X ZT . The following result is a bootstrap analogue
of Corollary A.1.

Corollary A.2. Assume that the assumptions in the statement of Proposition A.2 are satisfied.

Then we have the following results. (a) There exists some positive constants (My, My) such that

A o2 oa log (2n=1/2) log (2n=1/2)
b [ =7 > o [ B (22 ) 2] g fls )
I > M\ G MV ER nh . nh
=0y (n7")
(b) There exists some positive constants (M1, M}) such that
~ 2 : —1/2 log (2h-1/2
o % g (Tay ) Jleg @h) ) [los (2012
Pr, ‘fT 7|, > \thrMQ(\/E\/Fﬁ) —— VF —
=0y (n7")
(¢c) There exists some positive constants (M{', M) such that
= o2 o log (2h=1/2) log (2h=1/2)
P ‘ /A MY _R ) 2 F- _/
vy | |[fy = f L 5, V2 \/E\/ﬁ h VL nh?
=0y (n7")

Proof of Corollary A.2. Let

and g (x) = E[q(x)]. Let
Q = {K(.z|hzT) zecX}

ag = supE [le, (X, x| h,g,f)] )
TeX

By Chernozhukov et al. (2014, Corollary A.1(ii)), Q is VC-type with respect to the constant envelope
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F2. By change of variables and (S17), O'% = O (h). By similar arguments as those used in the proof
of Part (a) of Corollary A.1, for some My > 0,

o o0 log (2h=1/2) B
Pr !q - QHX > M2 (ﬁ V Fé) T =0 (n 1) . (832)

Let
~2 . 2 T =
0% = sup E; [ICP <XZ-,:E | h,g,az)} )
zeX

Since ||g||y = 6%/h and ||g|| 4 = 0%/, it follows from (S32) and the triangle inequality that

52 o2 o log 2h—1/2
Pr||=8— =8> My <\/—% v Fﬁ) # =0 (n7h) (S33)

and |6%/h — o2 /h| = O, <\/log (2n=1/2) /(nh)) By Proposition A.2(a),

Pr; [Hﬁ — f”x > e] < cy-exp <—c2 . %)

Og

Og log (2n=1/2) 3
— V F — < e< —.
“ <\/ﬁ ﬁ) nh =572

By this result, for all C' > 1,

o [ ], cm (Gv) 2

—coc2C? o log (2h_1/2) 1
< —1/2) % o8 L
< <2h > +1 —\/E\/Fﬁ 7,”]1 >2C .

By |6%/h —o%/h| = O, <\/10g (2h=1/2) /(nh)) and the fact that 0%/h = O (1), the second term

on the right hand side of the above inequality is zero wpal. Therefore,

~ G log (2n—1/2
P [fo [>T ) g(nh)] —0, (7). (s34

if C is taken to be sufficiently large. By the triangle inequality,

- {Hﬁ Al o (0 7))
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~ Ces (0g log (2n=1/2)
<Pri (|- F|, > 52 (2 vE) = —
<Pry |||fi = f Y+~ 3 N o

P Ces (og log (2h=1/2)
o U M WA N
* U X - Vh & nh
By Corollary A.1(a), the second term on the right hand side of the above inequality is zero wpal, if
C is taken to be sufficiently large. By this result and (S34),

~ = o log (2h~1/2)
p H . H Cog (22 v I8y ) /2222 ) o (07, S35
T]L fT f Py > C3 \/E \/E R nh p (n ) ( )
if C is taken to be sufficiently large. Fix any C' > 0 and take Mj to be such that (S32) holds, we

have

£ F A log (2h—1/2 log (2h—1/2
[l > ({0 (22 m) 2L )

< Pry Hﬁ _7HX S Ces <3_JZ y cr_;; VFQ> log (2h~1/2)

vh  Vh nh
~2 2 1 2h—1/2)
5% _o% oa ) [log (2h12)

It follows from (S33) that the second term on the right hand side of the above inequality is 0 wpal.
It follows from (S35) that the first term on the right hand side of the above inequality is O, (n™!),
if C' is taken to be sufficiently large. The conclusion in Part (a) can be deduced from the above

inequality and these results.

The conclusions in Part (b) and Part (c¢) follow from using similar arguments. |

Appendix B Proofs of the main results

Denote B, == [Qn,gn] . Smoothness results similar to those in Guerre et al. (2000, Proposition 1 and

Lemmas Al and A2) are summarized in the following lemma. Let

_JTH (t] pa,n) dt
RO m) = S Ty

Let & (- | pn,n) denote the derivative of € (- | pp,n). R (- | pn,n), R" (- | pn,n), H' (- | pn,n), ¢' (- | n),
g"(-1n), ¢’ (-,n) and ¢" (-,n) are defined similarly.
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Lemma S1. Assume that the assumptions in the statement of Proposition S1 are satisfied. Then we
have the following results. (a) & (- | pn,n) is thrice continuously differentiable on By, and £ (- | pp,n)
is bounded away from zero on B,,. (b) g (- | n) is twice continuously differentiable on By, and g (- | n)

s bounded away from zero on B,,.

Proof of Lemma S1. For any v € (v,7), we have

Folmn = SR

= —H'(v|pn,n) R(v|pn,n)
= —(n =1 paf" (@ pa) (pu (1= F* (v | pa)) + (1 =pu))" "> R (v | pa, ) (S36)

where
H (v | pp,n) = (0= 1) puf* (v | pn) (pn (1= F* (v | pn)) + (1 = pn))" 2.

It is also easy to see that 3’ (- | pn,n) is continuous on (v,v) and B’ (v | pp,n) > 0 for all v € (v, D).

By L’Hopital rule, limyzR (v | pn,n) = — (2H' (T | pn,n)) ", where
H' (@ | ppyn) = (n = 1) pu (1= pp)" "2 f* (@ pa) > 0,

and hence, 0 < limy56’ (v | pp,n) < co. It is straightforward to check that 0 < lim,, |, ' (v | pp,n) <
0o. Therefore, B (- | pp,n) is continuously differentiable on [v, 7] and 8’ (- | pp,n) is bounded away

from zero on [v,7]. By the inverse function theorem,

1
B, (g(b ‘ pTHn) ’p7hn)7

€ (b pn,n) = (S37)

for b € (Qn,gn) It follows that & (- | pp,n) is continuously differentiable on B,, and & (- | p,n) is

bounded away from zero on B,,. By the quotient rule, for v € (v,7),

H?% (v | pp,n) + 2H' (v | py,n) (ffH(t | pnyn) dt)

/ — —
R (U|pn7n) - H3 (’U |pn7n)

and

R0 ) =~ 0 puon) {2 0 L) 10 ) ([ 816 i) )
_SH2 (v | puyn) H' (v | puyn) — 6 <[H(t|pn,n)dt> (H'(v|pn,n))2}.

Then, it is easy to check that the limits of R’ (v | pp,n) and R” (v | pp,n) (as v L v or v 1 ) all exist
and are finite. It follows from this fact and (S36) that 8’ (- | p,,n) is twice continuously differentiable
on [v,7]. It follows from this fact and (S37) that & (- | pn,n) is twice continuously differentiable on

B,
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The conclusion in Part (b) follows from results in Part (a) and

gbln)=f" (0O pnn) )& (O] pa,n).

Denote

ZZH By <)

lNL n =1

and G (b,n) =E [CA? (b,n)] =r,G (b | n), where

rn = E[L(Ny=n)Nf]

=  Tndnn,

and the second equality follows from LIE. Let

g(b,n) Z Z IC1( u,b\h,@n@) (S38)

lNl n =1

~

and g (b,n) == g (b|n). We can now write G (b|n) = G (b,n) /7, and §(b|n) = §(b,n) /7.
Denote G (b | n) =G (b| n) —
G (b,n) and H (b,n) = g (b,
and second derivatives of g (-
derivatives of H (- | n). Let

~

GM|n)andH((b|n)=g(b|n)—g(b|n). Let G (b,n) =G (b,n)—
n)—g(mn). Let g (-|n), 3" (-|n), ¢ (-,n) and §" (-,n) be the first
|n) and g (-,n). Let H (- | n) and H” (- | n) be the first and second

<

Then we can write g, = 7,/ (n7,). The following lemma collects results on the rates of convergence

of Gn, G (- | n) and § (- | n) (and its derivatives).

Lemma S2. Assume that the assumptions in the statement of Proposition S1 are satisfied. Then

we have the following results. (a)
Pr[[pn —pul 2 af] = O (L),
for some o, = 0( Tog (L) /L). (b)
Pr|G (- [n)g, =ar] =0 (L),
for some G, = o( Tog (L) /L). (c)
Pr(|[H(- [ n)l|, > ar] =0 (L),
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for some af, = O (\/log (L)/ (Lh)) and similar results with o/, = O ( log (L) / (Lh3)) and o] =
O (/1o (L) / (LA7)) hold for | B (- | n)ll, and [[H" (- | n)5,.

Proof of Lemma S2. By Bernstein’s inequality (Giné and Nickl, Theorem 3.1.7),

log (L
Pr [‘%n - 7Tn‘ > Orn 2 %()] =0 (L_l) s (839)
where 0'72r’n i= 7, — 2. By this result and simple calculation,
n rny\/2-log(L)/L _
Pr f——l‘z Ir. g (l)/ —0 (L. (S40)
Tn T — Oxny/2-1log (L) /L

Similarly, by Bernstein’s inequality,

log (L
Pr [Wn - rn| > Orn\/2- %() =0 (L_l) R (841)

where o, ,, == m,E [(Nl*)2 | N, = n] — 72, By this result, (S40) and

~ ?n —Tn ?n Tn,
Gn — A4n = + = 1 ’
nmy, nm, \ Ty,

we have Pr (|G, — ¢u| > af] = O (L71) for some af = O (y/log (L) /L) Then, by the mean value

q
a;, we have

theorem and taking o = H —1y/
&L (#n) [gnEad ]N[0,1]

By (S41) and simple calculation,

7”_”_1‘2 orny/2 108 (DL | _ 11y (S42)

Tn — Orny/ 2. IOg (L) /L

Let (By, Bay, ...y Bn) be ii.d., By == (By, ..., By, Ni, N;) T and

1
G(Bi;b) =1(N;=n)Y 1(By<b).
i=1
Then we can write G (b,n) = L™ Zlel G (By;b). By Kosorok (2008, Lemma 9.8), Giné and Nickl
(2015, Theorem 3.6.9) and Nolan and Pollard (1987, Corollary 17), {G (:;b) : b € B, } is VC-type
respect to the constant envelope n. Then we apply Giné and Guillou (2002, Corollary 2.2) with

S24



U = 2n, 0> = n’m, and t taken to be Cy/log (L) L for some positive constant C. Note that
Equations (2.5) and (2.6) of Giné and Guillou (2002) hold for all L large enough. By Giné and
Guillou (2002, Corollary 2.2), taking C' to be sufficiently large, we have

Pr (|G (-,n)llg, > dr] =0 (L"),

for some &y = O < log (L) / L). The conclusion in Part (b) follows from this result, (S42) and

e m= 00 +é’(b,n) (i—"—1>.

Tn Tn

By (straightforward adaptations of) Proposition A.1(a) and Corollary A.1(a),
Pr[[E(-,n)llg, > af] = O (L7),

for some af = O ( log (L) / (Lh)). The first conclusion in Part (c) follows from this result, (S42)

and ~
B[ n) =200 500 (f_"_1>. (843)

Tn Tn

The other results follow from similar arguments, Proposition A.1(b,c) and Corollary A.1(b,c). M

Proof of Proposition S1. Let

N+
F*(v,n) = 1 Z i]l(f/,l<v>
I:N;=n i=1

Now we can write F* (v | pp) == F* (v,n) /. Denote

_Tn (pn, G (b | n))
(n=1)g(In)

E(b|n)=b

Let Vi ==& (By | N;) and F* (v | pn) == F* (v,n) /rn, where

N
ﬁ*(v,n) ::% Z Z]l(f/il Sv).

I:Nj=n i=1

Then, we decompose

B (] p) = F* (v | pa) = {F* (v | pa) = F* (0 | p) } + {F* (0| pa) = F* (v | )}, (544)

and R B R
o ~y F*(v,n) — F* (v,n F*(v,n) [1n
F* (v pn) = F* (v | pp) = ( )T wn) 5 )<?——1>. (S45)



Let X(b|n) :==&(B|n)— &b | pn,n). Let X (- | n) and X’ (- | n) denote the first and second

derivatives of X (- | n). Then, by straightforward calculation, we have

_ e pn,GOm) [ 1 1
Kbt = n-1 {aa)rn) g<b\n>}’ (546)

X'(b|n) _ _D277n(17m(i(i’1”))9(b’”) {a(b1’ n)_g(()l’ n)}
M (Pr, G(b]n) [g'(b]n) g (b]n)
P L L~ S (547)
and
" D3y (pn, G (b ] n) g (b] 1) 4+ Danp (pn, G (b | n)) g (b] 1) 1 1
XIfm) = == W1 {§<brn>‘g<b\n>}
2Do1n (P, G (b 1)) g(b|n) fG'(b][n) 4
+— — { (b| b|n}
+?7n(pmG(b!n)) A”(b!n)A2(b\n)—2(A’(b\n)) g|n)
n—1 gt (b|n)
g (b|n)g® (b n)—2(q (b|n)g(d|n)
iR } (S48)
Denote

K (b n) =1 (s G (b1 0)) = 10 (pa, G (6| ).

By straightforward calculation, we have

1K Cn)ls, < (1Dl satios Y 1020l st 1xj0) (B = Pl + 16 C [0)5,)

if [P, — pul < ozli. We have ||D177"||[pnia§]x[0,1} =0 (1) and ||D277n”[pnia§]><[0,1] = O (1) by straight-
forward calculation. Therefore, by these results and Lemma S2(a,b),

Pr(|K(-|n)lg, >aw] =0 (L"), (S49)

for some ar, = O (\/log (L) /L> Let T:= 1 (|K(- | n)llz, < dr). Let (T, T, T”) be defined by the
same formula with (K (- | n),ar) replaced by (H, ayr), (H', o)) and (H”, o] ), where (ar, o, o) are
defined in the statement of Lemma S2. Let I := TTT'T”. It follows from (S49) and Lemma S2 that
PriI=0]=0(L™).
Note that K (b | n)
~ ~ n
§(b|n)=&0[n)=-
(n=1)g(b|n)
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Denote 6y, := Hé( | n) — g( | n)

. Then, by the triangle inequality,

n

Ny
‘ﬁ*(v,n)—ﬁ*(v,n)‘ S% Z Z{]l (‘N/ﬂﬁv—l-(sL) —l(‘ZlSU—CSL)}.

I:N;j=n i=1

Let o, = & (bn | n) and v, = 3 (b, | m). Tt is easy to verify by straightforward calculation that
70 (Prs Mo,p < 00 and [[Damn (Pn, )l < oo. By these results, (S47) and Lemma S1(b),
[X'(- | n)|lg, is sufficiently small, when T = 1 and L is large enough. By Lemma Sl(a), £ (- | n)
is strictly increasing on B, and its inverse function S (- | n) == &1 (- | n) exists, if I = 1 and L is

sufficiently large. 3 (- | n) is a strictly increasing function on [v,,,7,]. We can write
1(€(Baln) <y) =1(y=7) + 1y € (1,,7) 1 (Bu < Bly | m)) (350)

when £ (- | n) is strictly increasing. If I = 1 and L is large enough, 6, < \/log (L) /L, [n — 7] <
log (L) / (Lh) and |v,, —v| < +/log (L) / (Lh). We have

]1% 3 %{1(%5%&)—1(%9—&)}
I:Nj=n i=1

:H{G(E(U—F(SLln),n)—é(ﬁ(v—&]n),n)},
when L is sufficiently large. Then,
Hﬁ’*(v,n)—ﬁ’*(v,n)‘ < ]I{G(E(v—k&]n),n)—G(B(v—éL\n),n>}
—HI{G(B(U—}—(&\n),n)—G<B(v—5L\n),n)}, (Sh1)

when L is sufficiently large. By Dette et al. (2006, Lemma A.1), if T = 1 and L is large enough,
there exists A € (0, 1) such that

N - X(bx|n)
B(v+6L|n)—Bw+0dL | pa,n) = & (b | psn) + AX (by [ 1)’

where by = (£ (- | pn,n) + AX (- | n)) ! (v + 61) and by (S46), (S47), Lemmas S1 and S2,

B IX(- [ n)llg,
Bv+dr|n)—pBv+dL ’p"’")‘ = Wen, & (0 pmn) — X (] s,

B log (L)

o) -

By mean value expansion, if I = 1 and L is large enough, |8 (v — 91 | pn,n) — B (v | pn,n)| <
Vl0og (L) /L. Therefore, if I = 1 and L is large enough, we have ‘B(U +dr|n)—p(v| pn,n)‘ <
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log (L) / (Lh) and similarly, ‘E(v —dr | n)=pB(v]|pn,n ‘ Vlog (L) / (Lh). Therefore, when L
is sufficiently large, the first term on the right hand side of (S51) can be bounded by

]I{G(B(v—i—éL\n),n) —G(E(v—éLln),n)}
< sup |G (B(v]pn,n)+1t1,m) =G (B(v|pn,n)+t2,n)], (S53)

(t1,t2)€[—€r,er]

for some e, = O < log (L) / (Lh)). By calculation and the mean value theorem,

swp E[(G(Bif (0 pun) +0) ~G(Bif (v pun) + 1))

(t1,t2)€[—ep,er]?

< s E[@BiBE]pun)+h) - GBAW | pun) - 1))
(tl,tz)E[O,EL}z

< sup G (B(v|pn,n)+t1,n) =G (B |pn,n)—t2,n) (S54)
(t1,t2)€[0,e1]?

- log (L)

- ofy=3). -

Let 8 == {G (8 (v|pn,n)+t):te€|—e€r,er]}. By Nolan and Pollard (1987, Corollary 17), the
function class {f — g : f,g € &} is VC-type respect to a constant envelope. By Chernozhukov et al.
(2014, Corollary 5.1) with F taken to be {f — ¢ : f,g € &}, F taken to be a constant envelope, and
o2 taken to be the term on the left hand side of the first inequality in (S55), we have

1/4
E[ sup ‘G(ﬁ(v’pmn)-l-h,n)—G(B(v\pn,n)+t27n)‘] :O<L—1/2 <log(L)> >
(t1,t2) Lh

E[—6L7EL]2
(S56)
By the mean value and inverse function theorems, if I = 1 and L is sufficiently large,
20r,
Bw+d,|n)—FBw—90,|n ‘ < -
prorain-Fo—oin| < GG T T,
_ log (L)
By the above result and Lemma S1(b),
~ ~ log (L
16 (Bw+orin)n) -G (Bw—orin),n)| < OgL( ), (857)

if L sufficiently large. Now by this result, (S51), (S53) and (S56),

H‘ﬁ* (v,n) — F* (U,n)‘ :Op< log(L)> .

L
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It follows from this result, (S42), (S45) and Pr{I=0] = O (L™!) that

% T _ log(L)
F(U|pn)_F (U|pn)_0p< T >

By, this result and (S44), we have

ﬁ*(vlpn)—F*(vlpn)z{f*(vlpn)—F*(vlpn)}JrOp( lOgL(L)>‘

By using (S50), write

G(E(U\n),n)

Tn

L(F* (v pa) = F* (v pa)) =T +1{G(BwIn)|n) ~GBE|pun) 0],

where the last equality holds when L is sufficiently large. The first term on the right hand side
can be bounded by [|G (-,n)[|z, = O, < log (L) /L) By similar arguments in the proof of (S52),

‘g(v [n)—p(v| pn,n)‘ < Wlog (L) /(Lh) if I =1 and L is sufficiently large. By using this result
and the mean value theorem, we have

H{e(Bwin In) =GB @ pwn) | n)}
19 (800 | pur) [ ) (30 [ = 50 [ ) + 0

1ogL ELL)> |

By Dette et al. (2006, Lemma A.1), if I = 1 and L is sufficiently large, there exists A € (0,1) such
that

C X@@lpan)|n) (B ln)X (b In)
§’(ﬂ(v[pn,n) \pn,n) (g/ <5A|pmn) + X/ <l~))\|n))2

X2 (6A | n> (g" (BA |pn,n) XY <b2 | n))
(& (Ba I pasm) + 2% (bx 1 n))

where by = (€ (- | pn,n) + AX (- | n)) ™" (v). It now follows from the above result, (S46), (S47), (S48)
and Lemmas S1 and S2 that

Bv|n)—Bv|ppn) =

+

)

9(B(v|pn,n)|n) X (8 (v | pu,n) | n) + Oy (%) (S58)

ﬁ*(v|pn)—F*(”|p”):_§’(5(v|pn n)|p” ’I’L)

By (546),

_ S H@ln) HGln) (gbln)
5 b In) g (b n) = (g 1>,
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Lemma S1(b) and Lemma S2(c), we have

_ T (Pn, G (B (v | pnsn) | n)) v ) | n log (L
KO ) )= LR P 6 0 ) )0, (PR

Then, by this result and (S58),

~—

. o i (P G (B (v | ) | ) o
Frlp) = F @) = =0 0e G0 e [pen g G pem m 00 P

+0, <loi§lL)> . (S59)

For b € [En + h,gn — h}, we have

~ 1 1 By —b
I:N;=n i=1

By Taylor expansion,

B30 )] = (30 | pus) 1)+ 50" (50 L) [ ) ([ 2B () ) 240 (17).
(S60)

= gIK(BMWW)]

(2

Let

Ji(v,n) =1 (N, = n)%LK <Bil —B(v] pn,n))_E
= Vh h

and o7 (v,n) = E [(Zle (Jl (v,n) /\/E))T =E[J? (v,n)] . Then we can write

L
~ ~ Jy (v,n
VIR (8 (0 poun) o) = EG (B (0| o) ) = 3 T2

I=1 L

By LIE and Taylor expansion, we have

03 (v,n) = (v | pn,n /K2 ) du+o( (S61)
and B
3
2= |5y (0,m)

which shows that Lyapunov’s condition holds. By Lyapunov’s central limit theorem (Severini, 2005,
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Theorem 12.2), Zlel Ji(v,n) Jog (v,n) =4 N (0,1). By this result, (S61) and Slutsky’s theorem,

VLR (G (B (v] pasn),n) = E[G (B0 ] payn),n)]) =4 N <0,9(5(U | pmn),n)/K2 (U)du> -
(562)
By (S42), (S43) and Lemma S2(c),

B3 (0| o) | ) = LR ) =0 B ARen)n) g (RELE) - (so3)

By this result, (S60) and (S62),

VIR (B3 0 o) 1) = 30" (5 o) [ ) ([ 2K ) ) )
2 (0, L2 [ 0.

The conclusion in Part (a) follows from this result and (S59).

It follows from straightforward calculations that E[J; (v,n) J; (v/,n/)] = o(1) for all (v,n) #
(v/,n’). The Lyapunov condition for the the multi-dimensional Lyapunov central limit theorem can

also be easily verified. Then by these results,

\/L_h(§ (5 (Ul | pn17n1) ’nl) —E [§ (5 (Ul | pn17n1) ’nl)])

VLR (G (B (0 | Pryesnar) snar) — E[G (B (v | Pragsnar) snan)))
)

0 g (B (v1 [ pnysma),n1)
x| ]| [ @y
0 g(ﬂ('l)]‘pn]w,nM)7nM)
The conclusion in Part (b) follows from this result, (S59), (S60) and (S63). |

Proof of Proposition S2. For notational simplicity, write 9=10 (\/7\\7) Since Q (-, -;+) is contin-

uously differentiable on [e,1 — 6]2 x ©, under Assumption S3, the uniform convergence

sup ‘r (1?“*,;3,«9) —T(F*,po,ﬂ)H 5,0 (S64)

VeOXF
follows from the consistency of F" and p. Let

Do (0:W) =" (F*,po,9) WY (F*, py, 9)
and it follows that

Y9 = arg min Dy (¥; W) .
VeOXF
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By the reverse triangle inequality,

‘ \ D (9; W) — /Dy (9; W)

A~ % Ak

< (r (F ,ﬁ,ﬁ) —T(F*,po,ﬁ))TWO (r (F ,ﬁ,ﬁ) —T(F*,po,ﬁ)>.

It follows from this result and (S64) that

VD (9: W) — /Dy (9; W)

sup
JYecoOxF

—p 0.

It follows from the reverse triangle inequality and (S64) that

sup

D(9:W) - f)(ﬁ;Wo)‘ —, 0.
YO XF

It follows from these results and the triangle inequality that

sup
YO XF

D (0; W’) — Dy (ﬁ;WO)‘ —, 0.

Consistency of 9 follows from this result and the standard arguments used in the proof of the
consistency of M-estimators (see, e.g., Hansen, 2022, Theorem 22.1). Compactness of © x F and
continuity of Dg (; Wy) ensure that the second requirement in the statement of Hansen (2022,
Theorem 22.1) is satisfied.

It follows from consistency of 9 and the assumption that ¢ is an interior point that 9 satisfies
the FOCs wpal. Then, we have

0, ((Lh)_1/2) - a%rT (ﬁ*,ﬁ,@) WY (F*,f),@)
- a%rT (F*,ﬁ,@) VAV{T (P*,f),@) _r (1?“*,;3,190> +r (F*,ﬁ,ﬂo)},

and therefore,

0 (55)% (r (7))
_ _a%TT (F".5.9) W (F',5,90) + 0, ((L)?).

Therefore, by the mean value theorem,

(5 (5.0 % 5 (759 (5-9)
0

=T (F' 5, 00) WY (F75,90) +0, (L)), (565)
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where 9 denotes the mean value. By Proposition S1, the fact that p — Py = Op (L_l/z) and the

mean value theorem,

T(A*,p,ﬁo) = T(f?*,ﬁ,ﬁo>—T(F*,Poﬂ9o)
_— (F ~F") +o, ((Lh)1?).

Then by this result, (S65), \'" 4 —p Wy, F —p F* and p —, py, we have

~ -1 ~x
D -9 = — (HJWOHO) I Wo o, (F _ F) + o, ((Lh)—1/2> . (S66)
The second conclusion follows from this result and Proposition S1. |
Denote Gy (- | n) == G; (- | n) = G (-| n), GT(' n) = Gi (n) — G(n), Hy (- | n) = gi (- | n) -

9(-|n)and H; (,n) =g (\n) —g(-,n). Let gi (- | n), gi (- | n), g; (-,n) and g{ (-,n) be the first
and second derivatives of gi (- [ n) and g; (-,n). Let Hi (- |n) and HY (- [ n) denote the first and

second derivatives of Hy (- | n). The following lemma is a bootstrap analogue of Lemma S2.

Lemma S3. Assume that the assumptions in the statement of Proposition S1 are satisfied. Then

we have the following results. (a)

— Pn

Pr; [ > o L] =0, (L_l) ,

for some deterministic sequence O‘?L =0 < log (L) /L) (b)

Pr, [HGT (1)l = au} =0, (L),
for some deterministic sequence a1, = O < log (L) /L) (c)

Pry [ (- [ m)llg, = at] = O0p (27,

for some deterministic sequence oy 1, = O ( log (L) / (Lh)> and similar results with deterministic
sequences o ;= O( log (L)/(Lh3)) and of ; = O( log (L)/(Lh5)) hold for HHﬁ[ (-] n)HB
and HH%’ (- | n)‘

n

Proof of Lemma S3. Let

b« |

1Y =n),
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Then, we can write c?;fl =7 / (m?i) By Bernstein’s inequality, we have
Pry [ =Tl > G %g(L) =0, (L7). (S67)
By Bernstein’s inequality and (S41),
Pr [|agn o2z o o (1

for some C' > 0. Then by this result, (S41), (S67) and the triangle inequality, we have

> 2\/az,n + c\/logL(L) \/2 : 10Lg D _o, (7). (S68)

It follows from similar arguments that

Pr; ?’IL — Ty

7= | 2 af| = 0, (L7)

Pry [

for some deterministic sequence of ; = O < log (L) / L). By simple calculation,

Py E_l' > L | o (Y.
#l T~ OF L

It follows from this result, (S68) and

~t ~t
~ Tn — T T T,
QJL_Qn: - n_'__n(/\_?_l)
nmy, i, \7h

that Pr¢ H(?IL - qn‘ > O‘?,L] = O, (L™') for some deterministic sequence ozﬁ?’L =0 ( log (L) /L)

The conclusion in Part (a) follows from this result.

By (S67) and the fact that for all z € R and ¢ > 0, |z V (—c¢)| > ¢ if and only if || > ¢, we have

2 -log (L 2 -log (L
Pry ||l — 7| > Gpm 2-log (L) _ Pry | |7 = 70| > 60 2-log (L)
’ L ’ L
= 0, (L7"). (S69)

Then it follows from the same arguments as those used to prove (S68) that

> O‘;,L} =0y (L_l) )

Ti—rn

Pr; {
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for some deterministic sequence 041[’7 . =0 ( log (L) / L), and by simple calculation,

n i 1

Then we apply Giné and Guillou (2002, Corollary 2.2) with U = 2n, 0? = n?#, and t taken to

be Cy/log (L) L for some positive constant C. Let af = or /2 (log (L) /L). Then, by Giné and
Guillou (2002, Corollary 2.2), taking C' to be sufficiently large, we have

log (L)

PI"T > C

|G () =G m)

. ]]l(|7’%n—7rn| <af)=0,(L").

Note that by (S39), we have 1 (|7, — m,| < @] ) = 1 wpal. Therefore,

log (L)

Pry HGT (on) — é(.,n)( > C

=0p (L_l) )

B,

if C is sufficiently large. The conclusion in Part (a) follows from this result, (S70) and

Gy (o | n) = Zt), Cr(oon) <7’—" —1>.

Tn Tn

The other conclusions follow from using (S70) and Corollary A.2. [

Proof of Proposition S3. Denote

M (pnaG(b | n))
(n—1)g;(b|n)

ET(b|n) =0

Let ‘N/J = 5 (le | N;). Let FVT* (v,n) be defined by the right hand side of (S15) with TA/Z}L replaced
by VJ and let F" (v | pn) = Fy (v,n) /rn. Let X (b n) =& (b | n) =& (b | pn,n). Let Xi (- | n) and
XY (- | n) denote the first and second derivatives of X (- | n). Then, we have

_ a(pn,G(b]n)) 1
Xplbln) = =="==7 {@www wwnﬁ’ (571
/ _ Dany (pn; G (b n))g(b|n) 1 1
X Cln) = - W1 {@w|m‘gw|m}
I (P, GO ) [F0I0) g (b]n)
e {ﬁ@hﬂ fw|m}’ o7
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and

Pl — D8 (P, G (0] n) g% (b] ) + Donn (P, G (b n) g (0] 1) 11
Xilbfn) = n1 \HeTs 76T

L 2D21n (pn, G (b [n)g®ln) JG(In) g (b|n)

n—1 g:(b|n) g% (b|n)
(G0 ) 303 olm)—2 (50 |n) 5@ n
n—1 3 n)

g"(bn)g®(b|n)—2(g (b|n)g(®|n)

N e } (S73)
Denote

Ky (0] n) =10 (5, Gy (0| 1)) =0 (9 G (b | ).

By Lemma S3(a,b) and similar arguments as those used to prove (S49),
Pry [IK; - | m)lg, > 1] = 05 (27,

for some deterministic sequence &4 7 = O ( log (L) /L) Let Ty =1 (HKT CInlg, < dT,L) Let
(']I'T, %, ']I'ﬂ[’) be defined by the same formula with (K, a4 1) replaced by (Hy, oy 1), (Hﬂ[, O‘;L7L) and
(Hﬂ[’, ozﬂ[”L>. Let Ij := T; T; T4 Ts. Then, we have Pry [I; = 0] = O, (L71).

Decompose

Ff (v pn) = Ff (0] pa) = —

Fwm) —Ff (wn) (o) (Z-1). (574)

Tn Tn

It now follows that

B [(rn_1>2] < ET[((?JL—T”>\/(?n—rn—a—rm\/m>>2]

(?n — Grny/2 l0g (L) /L)2

2
+1 ?n < a'\rn 2 log (L) ET o -1 )
) L ?IL
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+ PI"]L

Ty —Tn

2
~ 2-log (L ~ ~ 2-log (L

2
It is easy to check that E; |:(7‘n — rn> ] = O, (L™1). It now follows from this result, (S69) and the
2
above inequalities that E; [(Tn/?i - 1) ] =0, (L71).

Denote 52 = HET (-|n)— 5 (| n)HBn Then,

1 ~ ~
‘FT v,n) - F} vn‘éf > Z{Jl<1/i}§v+5z>—]1(1/5311—5})}.
lNT—nZ 1
Let o), = 5 (b, | n) and vl = ET( , | m). If It = 1 and L is large enough, 5T log (L) /L,
Un—’l)‘ < /log (L) / (Lh) and ‘vn—fu‘ < log (L) /(Lh). By (S72), if I} =1 and L is large

T(' | n) "
a strictly increasing function on {QIL,EH with ET (yT) =b, and BT (EL ] n) = b,,. Then, when L is
sufficiently large,

is sufficiently small, the inverse ﬁT (| n) = ST (-] n) exists and ﬁT (+]n)is

n

L | o) = B )] < 56 (B (v+6] 1n).n) =G (B (v— 0] 1n).n)}
—HIT{G(ET <U+5£]n>,n>—G<BT (v—&i]n),n)}. (S75)

By arguments similar to those in the proof of (S57),
I ‘G (ET <v+52 | n> ,n> -G (ET (v—dl | n> ,n)‘ < lOgZSL),
if L sufficiently large. For the first term on the right hand side of (S75),
I {GT (ET <v+52 | n> ,n> -G+ (BT (0—52 | n) ,n)}2

2
< ( sup |G+ (B (v | ppsn) + t1,n) — Gy (ﬂ(v\pmn)ﬂzn)!) ,
(t1,t2)

€[—er.er]?

for some deterministic sequence e;, = O ( log (L) / (Lh)). By arguments similar to those in the

proof of (S56),
_ 0
E]L sup |G]L (5 (U |pn7n) +t17n) _GT (5 (U |pn7n)+t27n)| = OP <L 1/2 < Lh

(t1,t2)€[—eL eL]’

—
o
=

N———
—
~
~

N———
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By this result and Ledoux and Talagrand (1991, Theorem 6.20),

? o 1/2
E; [((t t )Sup |G+ (B (v | pn,n) +t1,n) — Gt (B (v | pp.n) +t2,n)|) } ~0, (L—l <1 i%L)) ) |

6[—6[/,6[/}2

It now follows that
E; [(ﬁ; (v,n) — FVT* (v,n))z} < E; [HT (ﬁT* (v,n) — FVT* (v,n))z} + Pry [I} = 0]
= 0, <1°g (L)> : (S76)

L

2
Then it follows from this result, (S74) and E; [(rn /7 — 1) ] =0, (L) that

By (0 1o = B 0 1) | = 0, (2512). (577)
Write
Ff@lps) = Ti-F (v pa)+ (1 =T B (v] pa)

= 5(G(Biwinin)-GE @ pn) | n)
G (B (v n),n)

Tn

+1i - G (B (v | pp,n) [ n) + 1T - +(1—14) FY (v | pn) . (ST8)

By Dette et al. (2006, Lemma A.1), if Iy = 1 and L is large enough, there exists A € (0,1) such that

~ X4 (B(v]pn,n)|n) _ g Xi (bx | n) X§ (ba [ n)
(B |pn,n) | pn,n) <§’(b>\ | Pnsn) + )\Xﬁ[ (by | n))2
X2 (b | n) (€ (b | pum) + AXY (by [ )

(€ 0n [ D) + A (br | )

Bi(v|n) =B (]| pan) =

+

, (579)

where by = (£(- | pn,n) + XX (- | n))"t (v). By (S71), (S72), (S73), (S79) and the mean value

theorem, we have

L (G (B wln) [n) =GB @Ipan) [n) = L-g(B @ pwn)|n) (B (v]n) =B pun)

o <1ogL§1L)>

and

o lm) 5o L) = 1 KB ) [0) g (D)
b (Ao =80 em) =3 g Pt o ().
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It is easy to check that

I - X¢ (B (v | pnyn) | 1) :HT‘Tln(Pn,G(ﬁ(v\pn,n) | n))Hy (B (v | pn,n) | n) Lo <log(L)>.

(n=1)g*(B(v|pn,n)|n) Lh
By these results and (S78), we have

M (Pn; G (B (v | pny ) | n)) Hy (B (v | pny ) | )
(n—=1)g (B |[pnn)|n)§ B |pnn)|pnn)

G: (B <: W) (L=1) Fy (v] pn) + O (105;2”) |

FY (vlpn) = -I;

+I -G (B (v | pn,n) | n) + 1 -

Then, by this result and

RO Imn)n) , 3O6 ) (1)

3 (8 (0] prom) | m) = S z -

wh

we can write

Mo (P, G (B (v | o) [ 1) Gt (B (0 | pny1) s 1)

HOlm) = G5 a6 0 pum) [ B0 | o) 1)
+W+@+@+@+@40Cﬁ%v, (S80)
where

W ) T o B o

o G a0 e (7 )

W= 3 {G @ e )+ e e )

Vi ]IT-GT (@(vln),n)

vl o= (1—HT)FVT*ZZ|pn).

It follows from the Cauchy-Schwarz inequality that

E; (1—]11)2@?(5(”!%”)7”)} < \/PYT[HTZU]'ET @1 (B(v | ppyn),n) =G (B (v | pnsm),n))*
+Pri [y = 013 (B (v | pnsn) 1) . (S81)

By the Rosenthal inequality,

B¢ [@ (B | pasn) . m) =G (B(v | puim) m))] = O, ((Lh)?).
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By this result, Pr; [I} = 0] = O, (L™') and (S81), we have Var; [Vﬂ = O, (L71). It follows from

similar arguments and E; [(rn/ﬁl - 1) 2] = 0, (L") that Vary [VJ] =0, (L™"). If follows from

Vary [If] = Pry [I; = 0] - Pry [l = 1] = 0, (L)

that Var; [Vﬂ = O, (L™'). By Chernozhukov et al. (2014, Corollary 5.1), we have E [||G (-, n)||3n} =

) (L_l/z) and Ei “éT (,n) — é(-,n)HB ] =0, (L_l/z). By these result and Ledoux and Tala-
grand (1991, Theorem 6.20), we have

Vary [VH < Ey [(H@T(.,n)ulgnﬂ —0,(L7Y).

It is easy to see that since 0 < FVT* (v | pn) <n/frp,
~ 2
Vary [V;} <E [(1 — 1)’ (FT* (v] pn)> ] <Pyl =0/ =0, (L7Y).

It follows from the above results, (S77), (S80) and the Cauchy-Schwarz inequality that

M (P, G (B (v [ pn,n) [ 1)) gt (B (v [ pn,n) 1 )}
(n—=1)& B |pn,n)|pn, ) (B (v |pn,n),n)

By simple calculation, we have

Var; [ﬁ}* (v ]pn)] = Var; [ +o0, ((Lh)_1> . (S82)

Var; [g; (B (v | pp,n),n)]

2
11;{ > (Z K1 (BB (0 | pn, )h,Zn,Zn)) §2(5(vpn,n),n)}.

I:N;= i=1

The conclusion follows from this result, (S82), g (5 (v | pn,n),n) =, g (B (v | pn,n),n) and the fact
that

2
=3 (Z’Cl( 0280 | P, >h,6n,3n)) = g (B (v | pn,n) /K2

I:Ny=n \ i=1
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