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This supplement collects the econometric details omitted from the main text. Section S1 provides

a more detailed introduction to our econometric results and an extensive review of the related

econometric and statistical literature. Section S2 provides details about the generalized method of

moments (GMM) estimation method used in the main text. Section S3 discusses the asymptotic

normality property of the GMM estimator (Proposition S2). Section S4 discusses the bootstrap

method to estimate the asymptotic variance and shows its consistency (Proposition S3). Appendix

A gives the important ancillary results which are of independent interest and their proofs. Appendix

B collects the proofs of the main results (Propositions S1, S2 and S3).

Notation. For any m ∈ N, denote [m] := {1, ...,m}. For a finite set A, let |A| denote the

number of elements in A. Let 1m (0m) denote an m-dimensional vector whose elements are all one

(zero). Let Im denote the m-dimensional identity matrix.

S1 Introduction and related literature

In this paper, we develop a complete theory for the identification and estimation of the semiparamet-

ric model discussed in the conclusion section of Gentry and Li (2014), which has not been studied

in the literature, to the best of our knowledge.1 We derive testable sufficient conditions that ensure

(semiparametric) local and global identification of the copula parameter in the sense of Lewbel (2019)

and present them in Proposition 3.3 in the main text. Chen et al. (2025) considers the first-price

auction model with both endogenous entry and risk aversion under a parametric assumption on the

copula function for the signal and the private value. They show that the utility function and the

distribution of private values are nonparametrically identified conditional on the copula parameter,

which can be set identified. In our paper, we study the point (global) identification of the copula
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parameter, and its limited form (local identification), under the risk neutrality assumption and the

parametric assumption on the copula function. Chen et al. (2025) also show that the utility function

is nonparametrically identified if there is sufficient variation in the observed instruments and num-

ber of potential bidders. They also show parametric identification of the utility function. In either

case, as a consequence, the distribution of the private values conditional on entry is nonparametri-

cally identified. Adaptation of our identification results provides testable sufficient conditions that

ensure (local or global) identification of the copula parameter, in the semiparametric model with

endogenous entry, risk aversion and a parametric assumption on the copula function.

We propose a convenient and practical generalized method of moments (GMM) estimator and

develop its first-order asymptotic theory. Several intermediate results are of independent interest.

Our semiparametric GMM estimation uses the empirical CDF of pseudo values constructed by using

a nonparametrically estimated inverse bidding strategy. Guerre et al. (2000) proposes kernel density

estimation using these pseudo values. Ma et al. (2019) derives the first-order asymptotic theory of

the pseudo-value-based density estimator.2 The asymptotic properties of the pseudo-value-based

cumulative distribution function (CDF) estimator have not been studied in the literature to the

best of our knowledge. The econometric theory derived in this paper complements Ma et al. (2019)

and fills the void by providing the first-order asymptotic properties for the pseudo-value-based CDF

estimator. Our proof is also different from that of Ma et al. (2019). Recently, Zincenko (2024)

studies estimation and inference of seller’s expected revenue in high-bid first-price auctions. They

derive the asymptotic linearization of a pseudo-value-based CDF estimator. However, Zincenko

(2024) uses a kernel-smoothed bid CDF estimator in their estimated inverse bidding strategy for

constructing the pseudo values. The pseudo values in Guerre et al. (2000) and Ma et al. (2019) are

built from using the empirical CDF of the bids without kernel smoothing. This paper follows Guerre

et al. (2000) and Ma et al. (2019) since the empirical CDF incurs no smoothing bias. We show that

our estimator admits a desired asymptotic linearization by using a proof completely different from

Zincenko (2024)’s.

Estimating the inverse bidding strategy requires plugging in a nonparametric estimator of the

compactly supported bid density. The standard kernel density estimator suffers from boundary bias.

Either trimming (Guerre et al., 2000) or boundary bias correction (see, e.g., Hickman and Hubbard,

2015 or Ma et al., 2021) has been used to address the issue. Boundary correction for kernel density

estimators has received much attention in the statistical literature. In this paper, we follow Ma et al.

(2021) to use the boundary adaptive local linear density estimator (Lejeune and Sarda, 1992 and

Jones, 1993). One of the advantages of the local linear density estimator is that it does not require

selecting additional tuning parameters. The local linear density estimator has received attention in

the statistical literature (see, e.g., Cheng et al., 1997 and Chen and Huang, 2007). To the best of

our knowledge, the uniform convergence property (over the entire support) of this estimator has not

been derived in the literature. In this paper, we derive concentration bounds for the more general

2See Marmer and Shneyerov (2012) for another estimation method without using the estimated inverse bidding
strategy and calculating the pseudo values.
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local polynomial (LP) density estimators (Bickel and Doksum, 2015, Chapter 11.3), and also its first

and second derivatives, which extend the classical concentration results for kernel density estimators

(Giné and Guillou, 2002). Our new results give the uniform rate of convergence of the LP density

estimator over the entire support. These results are also useful in other semiparametric estimation

problems which involve compactly supported density functions as nuisance parameters.

The optimal weight matrix of the semiparametric GMM estimator depends on the asymptotic

variance of the pseudo-value-based CDF estimator, which takes a complicated form. By using

bootstrap, we avoid direct estimation of the asymptotic variance. We show that our bootstrap

variance estimator consistently estimates the asymptotic variance of the pseudo-value-based CDF

estimator.3 The proof hinges on the concentration bounds for the local linear density estimator

derived in Appendix A.

S2 Generalized method of moments estimation

Let

qn := E

[
N∗

l

Nl
| Nl = n

]

=
E
[
1 (Nl = n)

N∗
l

Nl

]

E [1 (Nl = n)]
,

where the second equality follows from LIE, and then we have qn = ϕn (pn). The sample analogue

of qn is thus given by

pqn :=
1

n |{l : Nl = n}|
∑

l:Nl=n

N∗
l . (S1)

Let ppn := ϕ−1
n (pqn). A consistent estimator of G (b | n) is

pG (b | n) :=
∑

l:Nl=n

∑N∗
l

i=1 1 (Bil ≤ b)
∑

l:Nl=nN
∗
l

. (S2)

Let bn := β (v | pn, n) and bn := β (v | pn, n) denote the boundary points. Let

pbn := max {Bil : i = 1, ..., N∗
l , Nl = n}

pbn := min {Bil : i = 1, ..., N∗
l , Nl = n}

3The bootstrap variance estimator may overestimate the asymptotic variance asymptotically, even when the con-
sistency of the bootstrap distribution can be established. See Hahn and Liao (2021) for examples and general theory.
Our consistency result excludes such possibility in our specific context. Ma et al. (2019) shows consistency of the boot-
strap distribution for the pseudo-value-based density estimator. Their result does not directly imply the consistency
of our bootstrap variance estimator.
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be the estimated boundary points. The local-linear-type boundary adaptive kernel density estimator

of g (b | n) is

pg (b | n) :=
∑

l:Nl=n

∑N∗
l

i=1
1
hK1

(
Bil, b | h,pbn,pbn

)

∑
l:Nl=nN

∗
l

, (S3)

where the function K1 is defined in Appendix A. Then we construct the nonparametric estimator
pξ (· | n) of the inverse bidding function ξ (· | pn, n).

In practical estimation of the copula parameter, we consider finitely many grid points v1 < · · · <
vJ in (v, v). Then we have a finite set of restrictions

F ∗ (vj | pn) = C (F (vj) , pn; θ0) /pn, for (j, n) ∈ {1, ..., J} × N , (S4)

for the J + 1 parameters (θ0, F (v1) , ..., F (vJ)). Let M := |N | and let n1 < n2 < · · · < nM be the

elements of N . Write the equations as

Q (F ∗ (vj | pnk
) , pnk

; θ0) = F (vj) , for (j, k) ∈ [J ]× [M ] . (S5)

For x = (x1, ..., xM )⊤ and y = (y1, ..., yM )⊤, denote

Q (x,y; θ) :=




Q (x1, y1; θ)
...

Q (xM , yM ; θ)


 .

Denote F 0 := (F (v1) , ..., F (vJ))
⊤, p0 := (pn1

, ..., pnM
)⊤, F ∗

j := (F ∗ (vj | pn1
) , ..., F ∗ (vj | pnM

))⊤

for j ∈ [J ], and F ∗ :=
(
F ∗⊤

1 , ...,F ∗⊤
J

)⊤
. For z :=

(
x⊤
1 , ...,x

⊤
J

)⊤ ∈ R
JM , denote

Ψ (z,y, θ) :=




Q (x1,y; θ)
...

Q (xJ ,y; θ)


 . (S6)

(S5) can be written in a vector form as

Ψ (F ∗,p0, θ0) = (IJ ⊗ 1M )F 0. (S7)

Let pp := (ppn1
, ..., ppnM

)⊤, pF
∗

j :=
(

pF ∗ (vj | pn1
) , ..., pF ∗ (vj | pnM

)
)⊤

for j ∈ [J ], and pF
∗

:=
(

pF
∗⊤

1 , ..., pF
∗⊤

J

)⊤
. Let W ∈ R

MJ×MJ be a weight matrix and F := (F1, ..., FJ )
⊤. Let

F :=
{
(F1, ..., FJ )

⊤ ∈ [0, 1]J : F1 ≤ F2 ≤ · · · ≤ FJ

}
.
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The GMM criterion function is

pD (θ,F ;W) :=
(
Ψ
(

pF
∗
, pp, θ

)
− (IJ ⊗ 1M )F

)⊤
W

(
Ψ
(

pF
∗
, pp, θ

)
− (IJ ⊗ 1M )F

)
.

The GMM estimator is defined by

(
pθ (W) , pF (W)

)
:= argmin

(θ,F )∈Θ×F

pD (θ,F ;W) . (S8)

To solve the minimization problem in (S8), we can easily partial out F given fixed θ. This requires

solving a quadratic programming under linear inequality constraints. Let

pF (θ;W) := argmin
F∈F

pD (θ,F ;W) . (S9)

Then, after partialling out F , we can calculate the GMM estimator

pθ (W) = argmin
θ∈Θ

(
Ψ
(

pF
∗
, pp, θ

)
− (IJ ⊗ 1M ) pF (θ;W)

)⊤
W

(
Ψ
(

pF
∗
, pp, θ

)
− (IJ ⊗ 1M ) pF (θ;W)

)

by one-dimensional grid search.

We now consider a useful special case. The first-order conditions corresponding to the uncon-

strained quadratic programming problem minF∈RJ
pD (θ,F ;W) are

−2 (IJ ⊗ 1M )⊤ WΨ
(

pF
∗
, pp, θ

)
+ 2 (IJ ⊗ 1M )⊤W (IJ ⊗ 1M )F = 0.

In case of W = IMJ , since (IJ ⊗ 1M )⊤ (IJ ⊗ 1M ) = M · IJ and

(IJ ⊗ 1M )⊤Ψ
(

pF
∗
, pp, θ

)
=




1
⊤
MQ

(
pF
∗

1, pp; θ
)

...

1
⊤
MQ

(
pF
∗

J , pp; θ
)


 ,

the minimizer corresponding to the unconstrained problem minF∈RJ
pD (θ,F ; IMJ) is given by

(
(IJ ⊗ 1M )⊤ (IJ ⊗ 1M )

)−1
(IJ ⊗ 1M )⊤ Ψ

(
pF
∗
, pp, θ

)
=




1
⊤
M

Q
(

pF
∗

1,pp;θ
)

M
...

1
⊤
M

Q
(

pF
∗

J ,pp;θ
)

M




. (S10)

Since 1
⊤
MQ

(
pF
∗

1, pp; θ
)

≤ · · · ≤ 1
⊤
MQ

(
pF
∗

J , pp; θ
)
, the unconstrained minimizer satisfies the linear
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inequality constraints in (S9). Therefore, pF (θ; IMJ) has a close form solution

pF (θ; IMJ) =




1
⊤
MQ

(

pF
∗

1,pp;θ
)

M
...

1
⊤
M

Q
(

pF
∗

J ,pp;θ
)

M




,

since it must coincide with the unconstrained minimizer.

S3 Asymptotic normality

First, we show the asymptotic normality of the pseudo-value-based CDF estimator. We assume that

the following assumption on the data-generating process holds, in addition to Assumptions 2.1 and

3.2 in the main text. Let f = F ′ be the density of the marginal distribution of the private costs.

Let C1 (x, y) := ∂C (x, y) /∂x.

Assumption S1. (a) f is twice continuously differentiable and bounded away from zero on [v, v].

(b) C1 (·, y) is bounded away from zero for all y ∈ (0, 1).

Since

f∗ (v | pn) :=
∂F ∗ (v | pn)

∂v
=

C1 (F (v) , pn)

pn
· f (v) ,

Assumption S1(b) guarantees that f∗ (· | pn) also satisfies the assumption in Assumption S1(a). If

C (·, ·) is an Archimedean copula with a twice differentiable strict generator ϕ : [0, 1] → [0,∞] with

ϕ′ (u) < 0 and ϕ′′ (u) ≥ 0 for u ∈ (0, 1), ϕ (1) = 0 and ϕ (0) = ∞ (see Nelsen, 2006, Chapter 4.1

for more details about the class of Archimedean copulas). Note that under these requirements, the

one-sided derivative ϕ′ (1) exists and ϕ′ (1) ≤ 0.4 Then, it is easy to check that ∂2C (x, y) /∂x2 ≤ 0

and therefore, C1 (·, y) is non-increasing and

lim
t↑1

C1 (t, y) =
ϕ′ (1)

ϕ′ (y)
.

Then, in this case, Assumption S1(b) is fulfilled if ϕ′ (1) < 0.

We also require that the following mild condition on the kernel function K (·) used in the defi-

nition of (S3) holds.

Assumption S2. The kernel function K (·) is symmetric, compactly supported on [−1, 1] and twice

continuously differentiable on R.

We state the asymptotic normality result in the following proposition. Let β′ (· | pn, n) denote

the derivative of β (· | pn, n) and let g′′ (· | n) denote the second derivative of g (· | n).
4Since ϕ′′ (u) ≥ 0 for u ∈ (0, 1), ϕ′ is non-decreasing on (0, 1). It follows that limu↑1ϕ

′ (u) = sup {ϕ′ (u) : u ∈ (0, 1)}
and limu↑1ϕ

′ (u) ≤ 0. Therefore, by the mean value theorem, ϕ′ (1) exists and equals limu↑1ϕ
′ (u).
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Proposition S1. Assume that Assumptions 2.1 and 3.2 in the main text and Assumptions S1 and

S2 hold. Assume that the bandwidth h is chosen to be proportional to L−γ with 1/5 ≤ γ < 1/3.

Then we have the following results. (a) We have

√
Lh

(
pF ∗ (v | pn)− F ∗ (v | pn)− Ξ (v | n)

(∫
K (u) u2du

)
h2
)

→d N

(
0,Σ (v | n)

∫
K2 (u) du.

)
,

where

Ξ (v | n) := −ηn (pn, G (β (v | pn, n) | n)) β′ (v | pn, n) g′′ (β (v | pn, n) | n)
2 (n− 1) g (β (v | pn, n) | n)

Σ (v | n) :=
η2n (pn, G (β (v | pn, n) | n)) (β′ (v | pn, n))2

(n− 1)2 g (β (v | pn, n) , n)
.

(b) Let Σj := (Σ (vj | n1) , ...,Σ (vj | nM))⊤ and Ξj := (Ξ (vj | n1) , ...,Ξ (vj | nM ))⊤. We have the

following joint asymptotic normality result:

√
Lh

(
pF
∗ − F ∗ −Ξ

(∫
K (u)u2du

)
h2
)

→d N

(
0,Σ

∫
K2 (u) du

)
,

where Σ is a diagonal matrix with
(
Σ⊤

1 ,Σ
⊤
2 , ...,Σ

⊤
J

)⊤
being the diagonal elements and Ξ :=(

Ξ⊤
2 ,Ξ

⊤
2 , ...,Ξ

⊤
J

)⊤
.

Let

Ψ 0 (z,y, θ) :=
∂Ψ (z,y, θ)

∂θ

Ψ 1 (z,y, θ) :=
∂Ψ (z,y, θ)

∂z⊤

denote the partial derivatives. The asymptotic theory of our GMM estimator is similar to that

of the local GMM estimator studied in Lewbel (2007). Denote ϑ :=
(
θ,F⊤

)⊤
, ϑ0 :=

(
θ0,F

⊤
0

)⊤
,

pϑ (W) :=
(

pθ (W) , pF (W)⊤
)⊤

and write

Υ (z,y,ϑ) := Ψ (z,y, θ)− (IJ ⊗ 1M )F .

Then, (S7) can be represented more compactly as

Υ (F ∗,p0,ϑ0) = 0JM ,

and the estimator pϑ (W) can be represented as

pϑ (W) = argmin
ϑ∈Θ×F

pD (ϑ;W) ,
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where

pD (ϑ;W) := Υ⊤
(

pF
∗
, pp,ϑ

)
WΥ

(
pF
∗
, pp,ϑ

)
.

We say that θ0 is globally identified from the finite set of restrictions if the system of equations

Υ (F ∗,p0,ϑ) = 0JM (S11)

has a unique solution at ϑ = ϑ0. By similar arguments, θ0 is globally identified from the finite set

of restrictions under a similar but stronger condition: for some k, l ∈ [M ] and j ∈ [J ],

min
θ∈Θ

∂

∂θ
(Q (F ∗ (vj | pnk

) , pnk
; θ)−Q (F ∗ (vj | pnl

) , pnl
; θ)) > 0. (S12)

Similarly, θ0 is locally identified from the finite set of restrictions if there exists an open neighborhood

around θ0 such that for any θ 6= θ0 in the neighborhood and (F1, ..., FJ ) ∈ [0, 1]J that satisfy

F1 ≤ F2 ≤ · · · ≤ FJ , (θ, F1, ..., FJ ) cannot be a solution to (S11). The condition in Proposition

3.3(b) guarantees that there must exist some v ∈ [v, v] so that θ0 is locally identified from the

restrictions

F ∗ (v | pn) = C (F (v) , pn; θ0) /pn, n ∈ N .

We make the following mild assumption on the parametric copula family {C (·, ·; θ) : θ ∈ Θ}.
It is satisfied by most commonly used parametric copula families (e.g., Gaussian, Ali-Mikhail-Haq,

Clayton, Frank, Gumbel, and Joe). Let C1 (x, y; θ) := ∂C (x, y; θ) /∂x, C2 (x, y; θ) := ∂C (x, y; θ) /∂y

and Cθ (x, y; θ) := ∂C (x, y; θ) /∂θ.

Assumption S3. For all ǫ ∈ (0, 1/2), C1 (x, y; θ) > 0 for all (x, y, θ) ∈ (0, 1) × [ǫ, 1− ǫ]×Θ.

Under Assumption S3, C (·, y; θ) /y is strictly increasing on [0, 1] and therefore, Q (·, y; θ) is also

strictly increasing on [0, 1]. Then we have

0 < Q (ǫ, y; θ) ≤ Q (x, y; θ) ≤ Q (1− ǫ, y; θ) < 1, (S13)

for all (x, y, θ) ∈ [ǫ, 1− ǫ]2 ×Θ. Since we can write

C (Q (x, y; θ) , y; θ)

y
− x = 0,

by (S13) and the implicit function theorem, Q (·, ·; ·) is continuously differentiable on [ǫ, 1− ǫ]2 ×Θ.

Let Ψ1 := Ψ 1 (F
∗,p0, θ0), Ψ0 := Ψ 0 (F

∗,p0, θ0) and Ω0 := Ψ1ΣΨ1. Clearly, Ψ1 and Ω0 are

both diagonal matrices. Let

Π0 :=
∂Υ (F ∗,p0,ϑ0)

∂ϑ⊤
=
[
Ψ0 − (IJ ⊗ 1M )

]
.
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Note that the second equality shows that Π0 has full rank under the condition (S12). Denote

Ξϑ (W) := −
(
Π

⊤
0 WΠ0

)−1
Π

⊤
0 WΨ1Ξ

Σϑ (W) :=
(
Π

⊤
0 WΠ0

)−1
Π

⊤
0 WΩ0WΠ0

(
Π

⊤
0 WΠ0

)−1
.

By using Proposition S1 and standard arguments in the proof of consistency and asymptotic nor-

mality of M-estimators (e.g., Hansen, Chapter 22), we show that the GMM estimator is consistent

and asymptotically normal.

Proposition S2. Assume that the conditions in the statement of Proposition S1 are satisfied. Also

assume that Assumption 3.1 in the main text is satisfied. Assume that xW →p W0 for some deter-

ministic positive definite matrix W0. Assume that ϑ0 is in the interior of Θ × F, Π0 has full rank

and (S11) has a unique solution at ϑ = ϑ0. Also assume that Assumption S3 is satisfied. Then we

have the following results. (a) pϑ
(

xW

)
→p ϑ0. (b)

√
Lh

(
pϑ
(

xW

)
− ϑ0 −Ξϑ (W0)

(∫
K (u) u2du

)
h2
)

→d N

(
0,Σϑ (W0)

∫
K2 (u) du

)
.

It then follows from standard calculation (e.g., Hansen, 2022, Theorem 13.5) that Σϑ (W0) −
Σϑ

(
Ω

−1
0

)
is positive semidefinite and the optimal weight matrix is given by Ω

−1
0 .

S4 Bootstrap estimation of the optimal weight matrix

Estimation of the optimal weight matrix Ω
−1
0 requires estimating Σ (v | n), which takes a complicated

form and depends on the derivative β′ (v | pn, n). We propose a convenient nonparametric bootstrap

estimator of Σ (v | n). Let {(
B†

1l, ..., B
†

N∗†
l

l
, N∗†

l , N †
l

)
: l ∈ [L]

}

be the nonparametric bootstrap sample drawn with replacement from

{(
B1l, ..., BN∗

l
l, N

∗
l , Nl

)
: l ∈ [L]

}
. (S14)

Let E† [·] and Var† [·] denote the conditional expectation and variance given (S14).

Let

pq†n :=
1

n
∣∣∣
{
l : N †

l = n
}∣∣∣

∑

l:N†
l
=n

N∗†
l

be the bootstrap analogue of pqn and let

pG† (b, n) :=
1

L

∑

l:N†
l
=n

N∗†
l∑

i=1

1

(
B†

il ≤ b
)
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pg† (b, n) :=
1

L

∑

l:N†
l
=n

N∗†
l∑

i=1

1

h
K1

(
B†

il, b | h,pbn,
pbn

)
.

It is easy to check that E†

[
pG† (b, n)

]
= pG (b, n). Let

r̃†n :=
1

L

∑

l:N†
l
=n

N∗†
l

prn :=
1

L

∑

l:Nl=n

N∗
l

pσ2
r,n :=

1

L

L∑

l:Nl=n

(N∗
l )

2 − pr2n

pr†n := r̃†N ∨
(

prn − pσr,n

√
2 · log (L)

L

)
,

pG† (b | n) := pG† (b, n) /pr†n and pg† (b | n) := pg† (b, n) /pr†n. Then let pp†n := ϕ−1
n

(
pq†n
)

and let

pξ† (b | n) = b−
ηn

(
pp†n, pG† (b | n)

)

(n− 1) pg† (b | n)

be the bootstrap analogue of pξ (b | n) and let pV †
il :=

pξ†

(
B†

il | N
†
l

)
. Then let

pF ∗
† (v, n) :=

1

L

∑

l:N†
l
=n

N∗†
l∑

i=1

1

(
pV †
il ≤ v

)
(S15)

be the bootstrap analogue of pF ∗ (v, n). Let pF ∗
† (v | pn) := pF ∗

† (v, n) /pr†n.

Proposition S3. Suppose that the assumptions in the statement of Proposition S2 are satisfied.

Then, for all (j, k) ∈ [J ]× [M ],

Var†

[
pF ∗
† (vj | pnk

)
]

Σ (vj | nk) / (Lh)
→p 1.

Let θ̃ := pθ (ImJ) be the preliminary estimator. Let pΨ1 := Ψ 1

(
pF
∗
, pp, θ̃

)
and let pΣ be the diagonal

matrix with
(

pΣ
⊤

1 , pΣ
⊤

2 , ..., pΣ
⊤

J

)⊤
∈ R

JM being the diagonal elements, where

pΣj := (Lh)
(
Var†

[
pF ∗
† (vj | pn1

)
]
, ...,Var†

[
pF ∗
† (vj | pnM

)
])⊤

.

The estimated optimal weight matrix is given by
(

pΨ1
pΣ pΨ1

)−1
.
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Appendix

Notation. For any function f : A → R, let ‖f‖A := supx∈A |f (x)|. For a univariate function f ,

denote f (j) (x) := (d/dx)j f (x). For a bivariate function f , denote D1f (x, y) := ∂f (x, y) /∂x and

D2f (x, y) := ∂f (x, y) /∂y. For a symmetric matrix A, let mineig (A) denote its smallest eigenvalue.

Let [a± b] be shorthand notation for the interval [a− b, a+ b]. “a =: b” is understood as “b is defined

by a.”. We write a > b if a ≤ C · b for some positive constant C that does not depend on the sample

size L. Let ‖x‖ denote the Euclidean norm of a real vector x. For a matrix A, ‖A‖ is understood

as the operator norm of A. “Law of iterated expectations” is abbreviated as “LIE”. “First-order

conditions” is abbreviated as “FOCs”. “With probability approaching one” is abbreviated as “wpa1”.

“Law of iterated expectations” is abbreviated as “LIE”.

Let F denote a class of R-valued functions defined on a compact set S in a finite-dimensional

Euclidean space. Let F be equipped with a norm ‖·‖. We say that a finite subset F◦ of F is an

ε-net if the union of the closed ‖·‖-balls of radius ε centered at points in F◦ covers F. N (ε,F, ‖·‖) :=
inf {|F◦| : F◦ is an ε-net of F} is called the ε-covering number. A function F : S → R+ is an envelope

of F if supf∈F |f | ≤ F . We say that F is a (uniform) Vapnik–Chervonenkis-type (VC-type) class

with respect to the envelope F (see, e.g., Giné and Nickl 2015, Definition 3.6.10) if there exist some

positive constants (A,V ) that are independent of the sample size such that for all ε ∈ (0, 1],

sup
Q∈Q

N
(
ε ‖F‖Q,2 ,F, ‖·‖Q,2

)
≤
(
A

ε

)V

, (S16)

where Q denotes the collection of all finitely discrete probability measures on S and ‖f‖Q,2 :=√∫
f2dQ.

Appendix A Concentration analysis of the local polynomial density

estimator

Let X1, ...,Xn be an i.i.d. sample where Xi has a bounded PDF f supported on X := [x, x]. For

some p ∈ N, let rp (t) := (1, t, ..., tp)⊤, Kp (t) := rp (t)K (t), Rp (t) := rp (t) r
⊤
p (t) and

Wp (x | h, x, x) :=

∫ x−x
h

x−x

h

Rp (t)K (t) dt

Kp (Xi, x | h, x, x) := e
⊤
1 W

−1
p (x | h, x, x)Kp

(
Xi − x

h

)
,

where e1 := (1, 0, ..., 0)⊤ ∈ R
p+1. It is easy to see that when h is sufficiently small,

sup
x∈X

∥∥W−1
p (x | h, x, x)

∥∥ ≤
(
mineig

(∫ 1

0
Rp (t)K (t) dt

))−1

=: ̟p. (S17)
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The local polynomial density estimator of f is

pf (x) :=
1

nh

n∑

i=1

Kp (Xi, x | h, x, x) . (S18)

In practice, the boundary points x and x are unknown. However, validity of the first-order asymptotic

results derived in this section is unaffected if we replace the unknown x and x with their super-

consistent estimators min {X1,X2, ...,Xn} and max {X1,X2, ...,Xn}. Let pf ′ and pf ′′ be the first and

second derivatives of pf .

Denote

K ′
p (t) :=

dKp (t)

dt
=

drp (t)

dt
K (t) + rp (t)K

′ (t)

and K ′′
p (t) := d2Kp (t) /dt

2. It is easy to check that

d

dx
Wp (x | h, x, x) = 1

h
Dp (x | h, x, x) , (S19)

where

Dp (x | h, x, x) := −Rp

(
x− x

h

)
K

(
x− x

h

)
+Rp

(
x− x

h

)
K

(
x− x

h

)

and supx∈X ‖Dp (x | h, x, x)‖ < ∞, since K (·) is compactly supported on [−1, 1]. By this result,

the product rule and

d

dx
W

−1
p (x | h, x, x) = −W

−1
p (x | h, x, x) d

dx
Wp (x | h, x, x)W−1

p (x | h, x, x) , (S20)

we have
∂

∂x
Kp (Xi, x | h, x, x) = 1

h
K̇p (Xi, x | h, x, x) ,

where

K̇p (Xi, x | h, x, x) = −e
⊤
1 W

−1
p (x | h, x, x)K ′

p

(
Xi − x

h

)

−e
⊤
1 W

−1
p (x | h, x, x)Dp (x | h, x, x)W−1

p (x | h, x, x)Kp

(
Xi − x

h

)
.(S21)

Then we have

pf ′ (x) =
1

nh2

n∑

i=1

K̇p (Xi, x | h, x, x) . (S22)

It is easy to see that for some matrix Sp (x | h, x, x),

d

dx
Dp (x | h, x, x) = 1

h
· Sp (x | h, x, x)

S12



and supx∈X ‖Sp (x | h, x, x)‖ < ∞. By (S19), (S20) and the product rule,

∂2

∂x2
Kp (Xi, x | h, x, x) = 1

h2
K̈p (Xi, x | h, x, x) ,

where

K̈p (Xi, x | h, x, x) := e
⊤
1 W

−1
p (x | h, x, x)K ′′

p

(
Xi − x

h

)

+ 2 · e⊤1 W−1
p (x | h, x, x)Dp (x | h, x, x)W−1

p (x | h, x, x)K ′
p

(
Xi − x

h

)

+2·e⊤1 W−1
p (x | h, x, x)Dp (x | h, x, x)W−1

p (x | h, x, x)Dp (x | h, x, x)W−1
p (x | h, x, x)Kp

(
Xi − x

h

)

− e
⊤
1 W

−1
p (x | h, x, x)Sp (x | h, x, x)W−1

p (x | h, x, x)Kp

(
Xi − x

h

)
.

Then we have

pf ′′ (x) =
1

nh3

n∑

i=1

K̈p (Xi, x | h, x, x) .

Let f (x) := E
[

pf (x)
]
, f

′
(x) := E

[
pf ′ (x)

]
and f

′′
(x) := E

[
pf ′′ (x)

]
. We have the following results

on the bias f (x)− f (x) and its first and second derivatives.

Proposition A.1. Assume that f is (p+ 1)-times continuously differentiable on [x, x] and h ↓ 0 as

n ↑ ∞. Assume that the kernel function K (·) satisfies Assumption S2. Then we have the following

results. (a)

f (x) = f (x) +

(
e
⊤
1 W

−1
p (x | h, x, x)

∫ x−x
h

x−x

h

Kp (u)u
p+1du

)
f (p+1) (x)

(p+ 1)!
hp+1 + o

(
hp+1

)
,

uniformly in x ∈ X . (b) f
′
(x) = f ′ (x)+O (hp), uniformly in x ∈ X ; (c) f

′′
(x) = f ′′ (x)+O

(
hp−1

)
,

uniformly in x ∈ X .

Proof of Proposition A.1. Denote φ (x) :=
(
f (0) (x) /0!, f (1) (x) /1!, ..., f (p) (x) /p!

)⊤
. Let H be

the (p+ 1)-dimensional diagonal matrix with diagonal elements (1, h, ..., hp). By change of variables

and Taylor expansion,

f (x) = e
⊤
1 W

−1
p (x | h, x, x)

∫ x

x

1

h
Kp

(
y − x

h

)
f (y) dy

= e
⊤
1 W

−1
p (x | h, x, x)

∫ x−x
h

x−x

h

Kp (u)

{
rp (u)

⊤
Hφ (x) +

f (p+1) (ẋ) (hu)p+1

(p+ 1)!

}
du,

where ẋ denotes the mean value that lies between x and x+ hu. The conclusion in Part (a) follows

from this result.
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Now by (S21), (S22), integration by parts and tedious algebra, we have

f
′
(x) =

∫ x

x

1

h
e
⊤
1 W

−1
p (x | h, x, x)Kp

(
y − x

h

)
f ′ (y) dy

+
1

h
e
⊤
1 W

−1
p (x | h, x, x)Kp

(
x− x

h

)
I (x)− 1

h
e
⊤
1 W

−1
p (x | h, x, x)Kp

(
x− x

h

)
I (x) ,

(S23)

where

I (x) := f (x)− r⊤p

(
x− x

h

)
W

−1
p (x | h, x, x)

∫ x

x

1

h
Kp

(
y − x

h

)
f (y) dy

and I (x) is defined similarly. By Taylor expansion,

I (x) = f (x)− r⊤p

(
x− x

h

)
W

−1
p (x | h, x, x)

∫ x

x

1

h
Kp

(
y − x

h

)
f (y) dy

= f (x)− r⊤p (x− x)φ (x)

−r⊤p

(
x− x

h

)
W

−1
p (x | h, x, x)

∫ x−x
h

x−x

h

Kp (u)
f (p+1) (ẋ) (hu)p+1

(p+ 1)!
du, (S24)

where ẋ denotes the mean value that lies between x and x+ hu. Since

∣∣∣∣K
(
x− x

h

)∣∣∣∣ > 1 (|x− x| ≤ h) , (S25)

by this result, (S17) and Taylor expansion,

1

h
e
⊤
1 W

−1
p (x | h, x, x)Kp

(
x− x

h

){
f (x)− r⊤p (x− x)φ (x)

}
= O (hp) ,

uniformly in x ∈ X . By this result, (S17) and (S24),

1

h
e
⊤
1 W

−1
p (x | h, x, x)Kp

(
x− x

h

)
I (x) = O (hp) , (S26)

uniformly in x ∈ X . Similarly,

1

h
e
⊤
1 W

−1
p (x | h, x, x)Kp

(
x− x

h

)
I (x) = O (hp) , (S27)

uniformly in x ∈ X . By Taylor expansion and (S17),

∫ x

x

1

h
e
⊤
1 W

−1
p (x | h, x, x)Kp

(
y − x

h

)
f ′ (y) dy

= e
⊤
1 W

−1
p (x | h, x, x)

∫ x−x
h

x−x

h

Kp (u)

{
rp (u)

⊤
Hφ′ (x) +

f (p+1) (ẋ) (hu)p

p!

}
du

S14



= f ′ (x) +O (hp) ,

uniformly in x ∈ X , where φ′ (x) :=
(
f (1) (x) /0!, f (2) (x) /1!, ..., f (p) (x) / (p− 1)!, 0

)⊤
and ẋ is the

mean value that lies between x and x + hu. The conclusion in Part (b) follows from this result,

(S23), (S26) and (S27).

For Part (c), first note that we can write

f
′′
(x) =

d

dx

∫ x

x

1

h
e
⊤
1 W

−1
p (x | h, x, x)Kp

(
y − x

h

)
f ′ (y) dy

+
1

h

d

dx
e
⊤
1 W

−1
p (x | h, x, x)Kp

(
x− x

h

)
I (x)− 1

h

d

dx
e
⊤
1 W

−1
p (x | h, x, x)Kp

(
x− x

h

)
I (x) .

(S28)

By integration by parts and (S20),

d

dx

∫ x

x

1

h
e
⊤
1 W

−1
p (x | h, x, x)Kp

(
y − x

h

)
f ′ (y) dy

=

∫ x

x

1

h
e
⊤
1 W

−1
p (x | h, x, x)Kp

(
y − x

h

)
f ′′ (y) dy

+
1

h
e
⊤
1 W

−1
p (x | h, x, x)Kp

(
x− x

h

)
İ (x)− 1

h
e
⊤
1 W

−1
p (x | h, x, x)Kp

(
x− x

h

)
İ (x) ,

(S29)

where

İ (x) := f ′ (x)− r⊤p

(
x− x

h

)
W

−1
p (x | h, x, x)

∫ x

x

1

h
Kp

(
y − x

h

)
f ′ (y) dy

and İ (x) is defined similarly. By Taylor expansion and (S17),

∫ x

x

1

h
e
⊤
1 W

−1
p (x | h, x, x)Kp

(
y − x

h

)
f ′′ (y) dy

= e
⊤
1 W

−1
p (x | h, x, x)

∫ x−x
h

x−x

h

Kp (u)

{
rp (u)

⊤
Hφ′′ (x) +

f (p+1) (ẋ) (hu)p−1

(p− 1)!

}
du

= f ′′ (x) +O
(
hp−1

)
,

uniformly in x ∈ X , where φ′′ (x) :=
(
f (2) (x) /0!, f (3) (x) /1!, ..., f (p) (x) / (p− 2)!, 0, 0

)⊤
and ẋ is

the mean value that lies between x and x + hu. By using arguments similar to those used in the

proof of (S26) (Taylor expansion, (S17) and (S25)), we have

1

h
e
⊤
1 W

−1
p (x | h, x, x)Kp

(
x− x

h

)
İ (x) = O

(
hp−1

)
,
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uniformly in x ∈ X . Similarly,

1

h
e
⊤
1 W

−1
p (x | h, x, x)Kp

(
x− x

h

)
İ (x) = O

(
hp−1

)
,

uniformly in x ∈ X . By these results and (S29),

d

dx

∫ x

x

1

h
e
⊤
1 W

−1
p (x | h, x, x)Kp

(
y − x

h

)
f ′ (y) dy = f ′′ (x) +O

(
hp−1

)
. (S30)

By Taylor expansion with remainder terms written in their integral forms,

f (x)− r⊤p (x− x)φ (x) =

∫ x

x

(x− t)p

p!
fp+1 (t) dt

and

I (x) =

∫ x

x

(x− t)p

p!
fp+1 (t) dt

−r⊤p

(
x− x

h

)
W

−1
p (x | h, x, x)

∫ x−x
h

x−x

h

Kp (u)

{∫ x+hu

x
f (p+1) (t)

(x+ hu− t)p

p!
dt

}
du.

By calculations,

d

dx

∫ x−x
h

x−x

h

Kp (u)

{∫ x+hu

x
f (p+1) (t)

(x+ hu− t)p

p!
dt

}
du

= −1

h
Kp

(
x− x

h

)∫ x

x
f (p+1) (t)

(x− t)p

p!
dt+

1

h
Kp

(
x− x

h

)∫ x

x
f (p+1) (t)

(x− t)p

p!
dt

−f (p+1) (x)

p!

∫ x−x
h

x−x

h

Kp (u) (hu)
p du+

∫ x−x
h

x−x

h

Kp (u)

{∫ x+hu

x
f (p+1) (t)

(x+ hu− t)p−1

(p− 1)!
dt

}
du.

By these results, (S17), (S20), and

∣∣∣∣K
(
x− x

h

)∣∣∣∣ > 1 (|x− x| ≤ h)

∣∣∣∣K
′

(
x− x

h

)∣∣∣∣ > 1 (|x− x| ≤ h) ,

we have
1

h

d

dx
e
⊤
1 W

−1
p (x | h, x, x)Kp

(
x− x

h

)
I (x) = O

(
hp−1

)
,

uniformly in x ∈ X . A similar result holds for the second term on the right hand side of (S29). The

conclusion in Part (c) follows from these results, (S28) and (S30). �
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Consider

K := {Kp (·, x | h, x, x) : x ∈ X}
σ2
K := sup

x∈X
E
[
K2

p (Xi, x | h, x, x)
]
.

Let
(
K̇, σ2

K̇

)
and

(
K̈, σ2

K̈

)
be defined similarly. By change of variables and (S17), σ2

K = O (h).

Similarly, σ2
K̇
∨ σ2

K̈
= O (h). Let Kj (t) := tjK (t) and cK := supt∈RK (t). It follows from Giné and

Nickl (2015, Proposition 3.6.12) that for all j = 0, 1, ..., p,

{
t 7→ Kj

(
t− x

b

)
: x ∈ X , b > 0

}

is VC-type with respect to the constant envelope cK . By (S17), Giné and Guillou (1999, Lemma

3 (b,c)) and Chernozhukov et al. (2014, Corollary A.1(i)), K is also VC-type with respect to the

constant envelope FK := (p+ 1)̟pcK , where ̟p is defined in (S17). By similar arguments, K̇ and

K̈ are also VC-type with respect to some constant envelopes F
K̇

and F
K̈
.

Proposition A.2. Assume that the assumptions in the statement of Proposition A.1 are satisfied.

Assume that
√

|log (h)| / (nh) ↓ 0 as n ↑ ∞. Then we have the following results. (a) There exist

some positive constants c1, c2, c3 which depend only on K (·), such that, for all n sufficiently large,

Pr
[∥∥∥ pf − f

∥∥∥
X
> ǫ
]
≤ c1 · exp

(
−c2 ·

(nh) ǫ2(
σ2
K
/h
)
∨ F 2

K

)
(S31)

if

c3

(
σK√
h
∨ FK

)√
log
(
2h−1/2

)

nh
≤ ǫ ≤ c3

2
.

(b) There exists positive constants c′1, c
′
2, c

′
3 which depend only on K (·), such that, for all n sufficiently

large,

Pr
[∥∥∥ pf ′ − f

′
∥∥∥
X
> ǫ
]
≤ c′1 · exp


−c′2 ·

(
nh3

)
ǫ2(

σ2
K̇
/h
)
∨ F 2

K̇


 ,

if

c′3

(
σ
K̇√
h
∨ F

K̇

)√
log
(
2h−1/2

)

nh3
≤ ǫ ≤ c′3

2h
.

(c) There exists positive constants c′′1 , c
′′
2 , c

′′
3 which depend only on K (·), such that, for all n suffi-

ciently large,

Pr
[∥∥∥ pf ′′ − f

′′
∥∥∥
X
> ǫ
]
≤ c′′1 · exp


−c′′2 ·

(
nh5

)
ǫ2(

σ2
K̈
/h
)
∨ F 2

K̈


 ,
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if

c′′3

(
σ
K̈√
h
∨ F

K̈

)√
log
(
2h−1/2

)

nh5
≤ ǫ ≤ c′′3

2h2
.

Proof of Proposition A.2. We apply Giné and Guillou (2002, Corollary 2.2) with F = K, σ =

σK ∨
(
FK

√
h
)

and U = 2FK. Note that log (U/σ) ≤ log
(
2h−1/2

)
and

√
nσ ≥

√
nhFK under these

definitions. Therefore, we have

U

√
log

(
U

σ

)
≤ 2FK

√
log
(
2h−1/2

)
≤

√
nhFK ≤ √

nσ,

when n is sufficiently large so that
√
log
(
2h−1/2

)
/ (nh) ≤ 1/2. Therefore, Condition (2.5) in the

statement of Giné and Guillou (2002, Corollary 2.2) is satisfied. Note that σ2/ (Uh) ≥ 1/2 and

σ
√

log (U/σ)√
nh

≤

(
σK ∨

(
FK

√
h
))√

log
(
2h−1/2

)

√
nh

= O

(√
|log (h)|

nh

)
.

Therefore, when n is sufficiently large,

√
nσ

√
log

(
U

σ

)
<

nσ2

U
.

The conclusion in Part (a) follows from applying Giné and Guillou (2002, Corollary 2.2). The

conclusions in Part (b) and Part (c) follow from the same arguments. �

Corollary A.1. Assume that the assumptions in the statement of Proposition A.2 are satisfied.

Then we have the following results. (a) There exists some M > 0 such that

Pr



∥∥∥ pf − f

∥∥∥
X
> M

(
σK√
h
∨ FK

)√
log
(
2h−1/2

)

nh


 = O

(
n−1

)
.

(b) There exists some M ′ > 0 such that

Pr



∥∥∥ pf ′ − f

′
∥∥∥
X
> M ′

(
σ
K̇√
h
∨ F

K̇

)√
log
(
2h−1/2

)

nh3


 = O

(
n−1

)
.

(c) There exists some M ′′ > 0 such that

Pr



∥∥∥ pf ′′ − f

′′
∥∥∥
X
> M ′′

(
σ
K̈√
h
∨ F

K̈

)√
log
(
2h−1/2

)

nh5


 = O

(
n−1

)
.

Proof of Corollary A.1. For all C > 1, C
((

σK/
√
h
)
∨ FK

)√
log
(
2h−1/2

)
/ (nh) < 1/2 if n is

S18



sufficiently large. Therefore, for ǫ = Cc3

((
σK/

√
h
)
∨ FK

)√
log
(
2h−1/2

)
/ (nh), (S31) holds if n is

sufficiently large. And it is easy to see that the right hand side of (S31) is O
(
n−1

)
if C is taken to

be sufficiently large. The conclusions in Part (b) and Part (c) follow from similar arguments. �

Let
{
X†

1 , ...,X
†
n

}
be a nonparametric bootstrap sample from {X1, ...,Xn}. Let pf† (x) be defined

by the right hand side of (S18) with Xi replaced by X†
i . The following result is a bootstrap analogue

of Corollary A.1.

Corollary A.2. Assume that the assumptions in the statement of Proposition A.2 are satisfied.

Then we have the following results. (a) There exists some positive constants (M1,M2) such that

Pr†



∥∥∥ pf† − f

∥∥∥
X
> M1




√√√√σ2
K

h
+M2

(
σQ√
h
∨ F 2

K

)√
log
(
2h−1/2

)

nh
∨ FK




√
log
(
2h−1/2

)

nh




= Op

(
n−1

)
.

(b) There exists some positive constants (M ′
1,M

′
2) such that

Pr†



∥∥∥ pf ′

† − f
′
∥∥∥
X
> M ′

1




√√√√σ2
K̇

h
+M ′

2

(
σ
Q̇√
h
∨ F 2

K̇

)√
log
(
2h−1/2

)

nh
∨ F

K̇




√
log
(
2h−1/2

)

nh3




= Op

(
n−1

)
.

(c) There exists some positive constants (M ′′
1 ,M

′′
2 ) such that

Pr†



∥∥∥ pf ′′

† − f
′′
∥∥∥
X
> M ′′

1




√√√√σ2
K̈

h
+M ′′

2

(
σ
Q̈√
h
∨ F 2

K̈

)√
log
(
2h−1/2

)

nh
∨ F

K̈




√
log
(
2h−1/2

)

nh5




= Op

(
n−1

)
.

Proof of Corollary A.2. Let

pq (x) :=
1

nh

n∑

i=1

K2
p (Xi, x | h, x, x)

and q (x) := E [pq (x)]. Let

Q :=
{
K2

p (·, x | h, x, x) : x ∈ X
}

σ2
Q := sup

x∈X
E
[
K4

p (X,x | h, x, x)
]
.

By Chernozhukov et al. (2014, Corollary A.1(ii)), Q is VC-type with respect to the constant envelope
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F 2
K . By change of variables and (S17), σ2

Q = O (h). By similar arguments as those used in the proof

of Part (a) of Corollary A.1, for some M2 > 0,

Pr


‖pq − q‖X > M2

(
σQ√
h
∨ F 2

K

)√
log
(
2h−1/2

)

nh


 = O

(
n−1

)
. (S32)

Let

pσ2
K := sup

x∈X
E†

[
K2

p

(
X†

i , x | h, x, x
)]

.

Since ‖pq‖X = pσ2
K/h and ‖q‖X = σ2

K/h, it follows from (S32) and the triangle inequality that

Pr



∣∣∣∣
pσ2
K

h
− σ2

K

h

∣∣∣∣ > M2

(
σQ√
h
∨ F 2

K

)√
log
(
2h−1/2

)

nh


 = O

(
n−1

)
(S33)

and
∣∣pσ2

K/h− σ2
K/h

∣∣ = Op

(√
log
(
2h−1/2

)
/ (nh)

)
. By Proposition A.2(a),

Pr†

[∥∥∥ pf† − pf
∥∥∥
X
> ǫ
]
≤ c1 · exp

(
−c2 ·

(nh) ǫ2(
pσ2
K/h

)
∨ F 2

K

)

if

c3

(
pσK√
h
∨ FK

)√
log
(
2h−1/2

)

nh
≤ ǫ ≤ c3

2
.

By this result, for all C > 1,

Pr†



∥∥∥ pf† − pf

∥∥∥
X
> Cc3

(
pσK√
h
∨ FK

)√
log
(
2h−1/2

)

nh




≤ c1

(
2h−1/2

)−c2c23C
2

+ 1



(

pσK√
h
∨ FK

)√
log
(
2h−1/2

)

nh
>

1

2C


 .

By
∣∣pσ2

K/h− σ2
K/h

∣∣ = Op

(√
log
(
2h−1/2

)
/ (nh)

)
and the fact that σ2

K/h = O (1), the second term

on the right hand side of the above inequality is zero wpa1. Therefore,

Pr†



∥∥∥ pf† − pf

∥∥∥
X
> Cc3

(
pσK√
h
∨ FK

)√
log
(
2h−1/2

)

nh


 = Op

(
n−1

)
, (S34)

if C is taken to be sufficiently large. By the triangle inequality,

Pr†



∥∥∥ pf† − f

∥∥∥
X
> Cc3

(
pσK√
h
∨ σK√

h
∨ FK

)√
log
(
2h−1/2

)

nh



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≤ Pr†



∥∥∥ pf† − pf

∥∥∥
X
>

Cc3
2

(
pσK√
h
∨ FK

)√
log
(
2h−1/2

)

nh




+ 1



∥∥∥ pf − f

∥∥∥
X
>

Cc3
2

(
σK√
h
∨ FK

)√
log
(
2h−1/2

)

nh


 .

By Corollary A.1(a), the second term on the right hand side of the above inequality is zero wpa1, if

C is taken to be sufficiently large. By this result and (S34),

Pr†



∥∥∥ pf† − f

∥∥∥
X
> Cc3

(
pσK√
h
∨ σK√

h
∨ FK

)√
log
(
2h−1/2

)

nh


 = Op

(
n−1

)
, (S35)

if C is taken to be sufficiently large. Fix any C > 0 and take M2 to be such that (S32) holds, we

have

Pr†



∥∥∥ pf† − f

∥∥∥
X
> Cc3




√√√√σ2
K

h
+M2

(
σQ√
h
∨ F 2

K

)√
log
(
2h−1/2

)

nh
∨ FK




√
log
(
2h−1/2

)

nh




≤ Pr†



∥∥∥ pf† − f

∥∥∥
X
> Cc3

(
pσK√
h
∨ σK√

h
∨ FK

)√
log
(
2h−1/2

)

nh




+ 1



∣∣∣∣
pσ2
K

h
− σ2

K

h

∣∣∣∣ > M2

(
σQ√
h
∨ F 2

K

)√
log
(
2h−1/2

)

nh


 .

It follows from (S33) that the second term on the right hand side of the above inequality is 0 wpa1.

It follows from (S35) that the first term on the right hand side of the above inequality is Op

(
n−1

)
,

if C is taken to be sufficiently large. The conclusion in Part (a) can be deduced from the above

inequality and these results.

The conclusions in Part (b) and Part (c) follow from using similar arguments. �

Appendix B Proofs of the main results

Denote Bn :=
[
bn, bn

]
. Smoothness results similar to those in Guerre et al. (2000, Proposition 1 and

Lemmas A1 and A2) are summarized in the following lemma. Let

R (v | pn, n) :=
∫ v
v H (t | pn, n) dt
H2 (v | pn, n)

.

Let ξ′ (· | pn, n) denote the derivative of ξ (· | pn, n). R′ (· | pn, n), R′′ (· | pn, n), H ′′ (· | pn, n), g′ (· | n),
g′′ (· | n), g′ (·, n) and g′′ (·, n) are defined similarly.
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Lemma S1. Assume that the assumptions in the statement of Proposition S1 are satisfied. Then we

have the following results. (a) ξ (· | pn, n) is thrice continuously differentiable on Bn and ξ′ (· | pn, n)
is bounded away from zero on Bn. (b) g (· | n) is twice continuously differentiable on Bn and g (· | n)
is bounded away from zero on Bn.

Proof of Lemma S1. For any v ∈ (v, v), we have

β′ (v | pn, n) = −β′ (v | pn, n)− v

H (v | pn, n)
·H ′ (v | pn, n)

= −H ′ (v | pn, n)R (v | pn, n)
= − (n− 1) pnf

∗ (v | pn) (pn (1− F ∗ (v | pn)) + (1− pn))
n−2R (v | pn, n) ,(S36)

where

H ′ (v | pn, n) = (n− 1) pnf
∗ (v | pn) (pn (1− F ∗ (v | pn)) + (1− pn))

n−2 .

It is also easy to see that β′ (· | pn, n) is continuous on (v, v) and β′ (v | pn, n) > 0 for all v ∈ (v, v).

By L’Hopital rule, limv↑vR (v | pn, n) = − (2H ′ (v | pn, n))−1, where

H ′ (v | pn, n) = (n− 1) pn (1− pn)
n−2 f∗ (v | pn) > 0,

and hence, 0 < limv↑vβ
′ (v | pn, n) < ∞. It is straightforward to check that 0 < limv↓vβ

′ (v | pn, n) <
∞. Therefore, β (· | pn, n) is continuously differentiable on [v, v] and β′ (· | pn, n) is bounded away

from zero on [v, v]. By the inverse function theorem,

ξ′ (b | pn, n) =
1

β′ (ξ (b | pn, n) | pn, n)
, (S37)

for b ∈
(
bn, bn

)
. It follows that ξ (· | pn, n) is continuously differentiable on Bn and ξ′ (· | pn, n) is

bounded away from zero on Bn. By the quotient rule, for v ∈ (v, v),

R′ (v | pn, n) = −
H2 (v | pn, n) + 2H ′ (v | pn, n)

(∫ v
v H (t | pn, n) dt

)

H3 (v | pn, n)

and

R′′ (v | pn, n) = −H−4 (v | pn, n)
{
2H ′′ (v | pn, n)H (v | pn, n)

(∫ v

v
H (t | pn, n) dt

)

−3H2 (v | pn, n)H ′ (v | pn, n)− 6

(∫ v

v
H (t | pn, n) dt

)(
H ′ (v | pn, n)

)2
}
.

Then, it is easy to check that the limits of R′ (v | pn, n) and R′′ (v | pn, n) (as v ↓ v or v ↑ v) all exist

and are finite. It follows from this fact and (S36) that β′ (· | pn, n) is twice continuously differentiable

on [v, v]. It follows from this fact and (S37) that ξ′ (· | pn, n) is twice continuously differentiable on

Bn.
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The conclusion in Part (b) follows from results in Part (a) and

g (b | n) = f∗ (ξ (b | pn, n) | pn) ξ′ (b | pn, n) .

�

Denote

pG (b, n) :=
1

L

∑

l:Nl=n

N∗
l∑

i=1

1 (Bil ≤ b)

and G (b, n) := E
[

pG (b, n)
]
= rnG (b | n), where

rn := E [1 (Nl = n)N∗
l ]

= πnqnn,

and the second equality follows from LIE. Let

pg (b, n) :=
1

L

∑

l:Nl=n

N∗
l∑

i=1

1

h
K1

(
Bil, b | h,pbn,pbn

)
(S38)

and g (b, n) := rng (b | n). We can now write pG (b | n) := pG (b, n) /prn and pg (b | n) = pg (b, n) /prn.

Denote G (b | n) := pG (b | n)−G (b | n) and H (b | n) := pg (b | n)− g (b | n). Let G (b, n) := pG (b, n)−
G (b, n) and H (b, n) := pg (b, n) − g (b, n). Let pg′ (· | n), pg′′ (· | n), pg′ (·, n) and pg′′ (·, n) be the first

and second derivatives of pg (· | n) and pg (·, n). Let H
′ (· | n) and H

′′ (· | n) be the first and second

derivatives of H (· | n). Let

pπn :=
1

L

L∑

l=1

1 (Nl = n) .

Then we can write pqn = prn/ (npπn). The following lemma collects results on the rates of convergence

of pqn, pG (· | n) and pg (· | n) (and its derivatives).

Lemma S2. Assume that the assumptions in the statement of Proposition S1 are satisfied. Then

we have the following results. (a)

Pr
[
|ppn − pn| ≥ αp

L

]
= O

(
L−1

)
,

for some αp
L = O

(√
log (L) /L

)
. (b)

Pr
[
‖G (· | n)‖Bn

≥ ᾱL

]
= O

(
L−1

)
,

for some ᾱL = O
(√

log (L) /L
)
. (c)

Pr
[
‖H (· | n)‖Bn

≥ αL

]
= O

(
L−1

)
,
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for some αL = O
(√

log (L) / (Lh)
)

and similar results with α′
L = O

(√
log (L) / (Lh3)

)
and α′′

L =

O
(√

log (L) / (Lh5)
)

hold for ‖H′ (· | n)‖Bn
and ‖H′′ (· | n)‖Bn

.

Proof of Lemma S2. By Bernstein’s inequality (Giné and Nickl, Theorem 3.1.7),

Pr

[
|pπn − πn| ≥ σπ,n

√
2 · log (L)

L

]
= O

(
L−1

)
, (S39)

where σ2
π,n := πn − π2

n. By this result and simple calculation,

Pr

[∣∣∣∣
πn
pπn

− 1

∣∣∣∣ ≥
σπ,n

√
2 · log (L) /L

πn − σπ,n
√

2 · log (L) /L

]
= O

(
L−1

)
. (S40)

Similarly, by Bernstein’s inequality,

Pr

[
|prn − rn| ≥ σr,n

√
2 · log (L)

L

]
= O

(
L−1

)
, (S41)

where σr,n := πnE
[
(N∗

l )
2 | Nl = n

]
− r2n. By this result, (S40) and

pqn − qn =
prn − rn
nπn

+
prn
nπn

(
πn
pπn

− 1

)
,

we have Pr
[
|pqn − qn| ≥ αq

L

]
= O

(
L−1

)
for some αq

L = O
(√

log (L) /L
)
. Then, by the mean value

theorem and taking αp
L :=

∥∥∥
(
ϕ−1
n

)′∥∥∥
[qn±αq

L]∩[0,1]
αq
L, we have

Pr
[
|ppn − pn| ≥ αp

L

]
≤ Pr

[
|pqn − qn| ≥ αq

L

]
= O

(
L−1

)
.

By (S41) and simple calculation,

Pr

[∣∣∣∣
rn
prn

− 1

∣∣∣∣ ≥
σr,n

√
2 · log (L) /L

rn − σr,n
√

2 · log (L) /L

]
= O

(
L−1

)
. (S42)

Let (B1l, B2l, ..., Bnl) be i.i.d., Bl := (B1l, ..., Bnl, N
∗
l , Nl)

⊤ and

G (Bl; b) := 1 (Nl = n)

N∗
l∑

i=1

1 (Bil ≤ b) .

Then we can write pG (b, n) := L−1
∑L

l=1 G (Bl; b). By Kosorok (2008, Lemma 9.8), Giné and Nickl

(2015, Theorem 3.6.9) and Nolan and Pollard (1987, Corollary 17), {G (·; b) : b ∈ Bn} is VC-type

respect to the constant envelope n. Then we apply Giné and Guillou (2002, Corollary 2.2) with
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U = 2n, σ2 = n2πn and t taken to be C
√
log (L)L for some positive constant C. Note that

Equations (2.5) and (2.6) of Giné and Guillou (2002) hold for all L large enough. By Giné and

Guillou (2002, Corollary 2.2), taking C to be sufficiently large, we have

Pr
[
‖G (·, n)‖Bn

≥ q̄αL

]
= O

(
L−1

)
,

for some q̄αL = O
(√

log (L) /L
)
. The conclusion in Part (b) follows from this result, (S42) and

G (b | n) = G (b, n)

rn
+

pG (b, n)

rn

(
rn
prn

− 1

)
.

By (straightforward adaptations of) Proposition A.1(a) and Corollary A.1(a),

Pr
[
‖H (·, n)‖Bn

≥ αg
L

]
= O

(
L−1

)
,

for some αg
L = O

(√
log (L) / (Lh)

)
. The first conclusion in Part (c) follows from this result, (S42)

and

H (b | n) = H (b, n)

rn
+

pg (b, n)

rn

(
rn
prn

− 1

)
. (S43)

The other results follow from similar arguments, Proposition A.1(b,c) and Corollary A.1(b,c). �

Proof of Proposition S1. Let

pF ∗ (v, n) :=
1

L

∑

l:Nl=n

N∗
l∑

i=1

1

(
pVil ≤ v

)
.

Now we can write pF ∗ (v | pn) := pF ∗ (v, n) /prn. Denote

ξ̃ (b | n) := b− ηn (pn, G (b | n))
(n− 1) pg (b | n) .

Let Ṽil := ξ̃ (Bil | Nl) and F̃ ∗ (v | pn) := F̃ ∗ (v, n) /rn, where

F̃ ∗ (v, n) :=
1

L

∑

l:Nl=n

N∗
l∑

i=1

1

(
Ṽil ≤ v

)
.

Then, we decompose

pF ∗ (v | pn)− F ∗ (v | pn) =
{
F̃ ∗ (v | pn)− F ∗ (v | pn)

}
+
{

pF ∗ (v | pn)− F̃ ∗ (v | pn)
}
, (S44)

and

pF ∗ (v | pn)− F̃ ∗ (v | pn) =
pF ∗ (v, n)− F̃ ∗ (v, n)

rn
+

pF ∗ (v, n)

rn

(
rn
prn

− 1

)
. (S45)
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Let X (b | n) := ξ̃ (b | n) − ξ (b | pn, n). Let X
′ (· | n) and X

′′ (· | n) denote the first and second

derivatives of X (· | n). Then, by straightforward calculation, we have

X (b | n) = −ηn (pn, G (b | n))
n− 1

{
1

pg (b | n) −
1

g (b | n)

}
, (S46)

X
′ (b | n) = −D2ηn (pn, G (b | n)) g (b | n)

n− 1

{
1

pg (b | n) −
1

g (b | n)

}

+
ηn (pn, G (b | n))

n− 1

{
pg′ (b | n)
pg2 (b | n) −

g′ (b | n)
g2 (b | n)

}
, (S47)

and

X
′′ (b | n) = −D2

2ηn (pn, G (b | n)) g2 (b | n) +D2ηn (pn, G (b | n)) g′ (b | n)
n− 1

{
1

pg (b | n) −
1

g (b | n)

}

+
2D2ηn (pn, G (b | n)) g (b | n)

n− 1

{
pg′ (b | n)
pg2 (b | n) −

g′ (b | n)
g2 (b | n)

}

+
ηn (pn, G (b | n))

n− 1

{
pg′′ (b | n)pg2 (b | n)− 2 (pg′ (b | n))2 pg (b | n)

pg4 (b | n)

−g′′ (b | n) g2 (b | n)− 2 (g′ (b | n))2 g (b | n)
g4 (b | n)

}
. (S48)

Denote

K (b | n) := ηn

(
ppn, pG (b | n)

)
− ηn (pn, G (b | n)) .

By straightforward calculation, we have

‖K (· | n)‖Bn
≤
(
‖D1ηn‖[pn±αp

L]×[0,1] ∨ ‖D2ηn‖[pn±αp

L]×[0,1]

) (
|ppn − pn|+ ‖G (· | n)‖Bn

)
,

if |ppn − pn| < αp
L. We have ‖D1ηn‖[pn±αp

L]×[0,1] = O (1) and ‖D2ηn‖[pn±αp
L]×[0,1] = O (1) by straight-

forward calculation. Therefore, by these results and Lemma S2(a,b),

Pr
[
‖K (· | n)‖Bn

≥ α̃L

]
= O

(
L−1

)
, (S49)

for some α̃L = O
(√

log (L) /L
)
. Let T̄ := 1

(
‖K (· | n)‖Bn

< α̃L

)
. Let (T,T′,T′′) be defined by the

same formula with (K (· | n) , α̃L) replaced by (H, αL), (H
′, α′

L) and (H′′, α′′
L), where (αL, α

′
L, α

′′
L) are

defined in the statement of Lemma S2. Let I := T̄TT
′
T
′′. It follows from (S49) and Lemma S2 that

Pr [I = 0] = O
(
L−1

)
.

Note that
pξ (b | n)− ξ̃ (b | n) = − K (b | n)

(n− 1) pg (b | n) .
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Denote δL :=
∥∥∥pξ (· | n)− ξ̃ (· | n)

∥∥∥
Bn

. Then, by the triangle inequality,

∣∣∣ pF ∗ (v, n)− F̃ ∗ (v, n)
∣∣∣ ≤ 1

L

∑

l:Nl=n

N∗
l∑

i=1

{
1

(
Ṽil ≤ v + δL

)
− 1

(
Ṽil ≤ v − δL

)}
.

Let vn := ξ̃
(
bn | n

)
and vn := ξ̃ (bn | n). It is easy to verify by straightforward calculation that

‖ηn (pn, ·)‖[0,1] < ∞ and ‖D2ηn (pn, ·)‖[0,1] < ∞. By these results, (S47) and Lemma S1(b),

‖X′ (· | n)‖Bn
is sufficiently small, when I = 1 and L is large enough. By Lemma S1(a), ξ̃ (· | n)

is strictly increasing on Bn and its inverse function β̃ (· | n) := ξ̃−1 (· | n) exists, if I = 1 and L is

sufficiently large. β̃ (· | n) is a strictly increasing function on [vn, vn]. We can write

1

(
ξ̃ (Bil | n) ≤ y

)
= 1 (y ≥ vn) + 1 (y ∈ (vn, vn))1

(
Bil ≤ β̃ (y | n)

)
(S50)

when ξ̃ (· | n) is strictly increasing. If I = 1 and L is large enough, δL >
√

log (L) /L, |vn − v| >√
log (L) / (Lh) and |vn − v| >

√
log (L) / (Lh). We have

I · 1
L

∑

l:Nl=n

N∗
l∑

i=1

{
1

(
Ṽil ≤ v + δL

)
− 1

(
Ṽil ≤ v − δL

)}

= I

{
pG
(
β̃ (v + δL | n) , n

)
− pG

(
β̃ (v − δL | n) , n

)}
,

when L is sufficiently large. Then,

I

∣∣∣ pF ∗ (v, n)− F̃ ∗ (v, n)
∣∣∣ ≤ I

{
G

(
β̃ (v + δL | n) , n

)
−G

(
β̃ (v − δL | n) , n

)}

+I

{
G
(
β̃ (v + δL | n) , n

)
−G

(
β̃ (v − δL | n) , n

)}
, (S51)

when L is sufficiently large. By Dette et al. (2006, Lemma A.1), if I = 1 and L is large enough,

there exists λ ∈ (0, 1) such that

β̃ (v + δL | n)− β (v + δL | pn, n) = − X (bλ | n)
ξ′ (bλ | pn, n) + λX′ (bλ | n) ,

where bλ := (ξ (· | pn, n) + λX (· | n))−1 (v + δL) and by (S46), (S47), Lemmas S1 and S2,

∣∣∣β̃ (v + δL | n)− β (v + δL | pn, n)
∣∣∣ ≤ ‖X (· | n)‖Bn

infb∈Bn
ξ′ (b | pn, n)− ‖X′ (· | n)‖Bn

= O

(√
log (L)

Lh

)
. (S52)

By mean value expansion, if I = 1 and L is large enough, |β (v − δL | pn, n)− β (v | pn, n)| >√
log (L) /L. Therefore, if I = 1 and L is large enough, we have

∣∣∣β̃ (v + δL | n)− β (v | pn, n)
∣∣∣ >
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√
log (L) / (Lh) and similarly,

∣∣∣β̃ (v − δL | n)− β (v | pn, n)
∣∣∣ >

√
log (L) / (Lh). Therefore, when L

is sufficiently large, the first term on the right hand side of (S51) can be bounded by

I

{
G

(
β̃ (v + δL | n) , n

)
−G

(
β̃ (v − δL | n) , n

)}

≤ sup
(t1,t2)∈[−ǫL,ǫL]

2

|G (β (v | pn, n) + t1, n)−G (β (v | pn, n) + t2, n)| , (S53)

for some ǫL = O
(√

log (L) / (Lh)
)
. By calculation and the mean value theorem,

sup
(t1,t2)∈[−ǫL,ǫL]

2

E
[
(G (Bl;β (v | pn, n) + t1)− G (Bl;β (v | pn, n) + t2))

2
]

≤ sup
(t1,t2)∈[0,ǫL]

2

E
[
(G (Bl;β (v | pn, n) + t1)− G (Bl;β (v | pn, n)− t2))

2
]

≤ sup
(t1,t2)∈[0,ǫL]

2

G (β (v | pn, n) + t1, n)−G (β (v | pn, n)− t2, n) (S54)

= O

(√
log (L)

Lh

)
. (S55)

Let G := {G (·;β (v | pn, n) + t) : t ∈ [−ǫL, ǫL]}. By Nolan and Pollard (1987, Corollary 17), the

function class {f − g : f, g ∈ G} is VC-type respect to a constant envelope. By Chernozhukov et al.

(2014, Corollary 5.1) with F taken to be {f − g : f, g ∈ G}, F taken to be a constant envelope, and

σ2 taken to be the term on the left hand side of the first inequality in (S55), we have

E

[
sup

(t1,t2)∈[−ǫL,ǫL]
2

|G (β (v | pn, n) + t1, n)−G (β (v | pn, n) + t2, n)|
]
= O

(
L−1/2

(
log (L)

Lh

)1/4
)
.

(S56)

By the mean value and inverse function theorems, if I = 1 and L is sufficiently large,

∣∣∣β̃ (v + δL | n)− β̃ (v − δL | n)
∣∣∣ ≤ 2δL

infb∈Bn
ξ′ (b | pn, n)− ‖X′ (· | n)‖Bn

= O

(√
log (L)

L

)
.

By the above result and Lemma S1(b),

I

∣∣∣G
(
β̃ (v + δL | n) , n

)
−G

(
β̃ (v − δL | n) , n

)∣∣∣ >
√

log (L)

L
, (S57)

if L sufficiently large. Now by this result, (S51), (S53) and (S56),

I

∣∣∣ pF ∗ (v, n)− F̃ ∗ (v, n)
∣∣∣ = Op

(√
log (L)

L

)
.
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It follows from this result, (S42), (S45) and Pr [I = 0] = O
(
L−1

)
that

pF ∗ (v | pn)− F̃ ∗ (v | pn) = Op

(√
log (L)

L

)
.

By, this result and (S44), we have

pF ∗ (v | pn)− F ∗ (v | pn) =
{
F̃ ∗ (v | pn)− F ∗ (v | pn)

}
+Op

(√
log (L)

L

)
.

By using (S50), write

I

(
F̃ ∗ (v | pn)− F ∗ (v | pn)

)
= I ·

G

(
β̃ (v | n) , n

)

rn
+ I

{
G
(
β̃ (v | n) | n

)
−G (β (v | pn, n) | n)

}
,

where the last equality holds when L is sufficiently large. The first term on the right hand side

can be bounded by ‖G (·, n)‖Bn
= Op

(√
log (L) /L

)
. By similar arguments in the proof of (S52),

∣∣∣β̃ (v | n)− β (v | pn, n)
∣∣∣ >

√
log (L) / (Lh) if I = 1 and L is sufficiently large. By using this result

and the mean value theorem, we have

I

{
G
(
β̃ (v | n) | n

)
−G (β (v | pn, n) | n)

}

= I · g (β (v | pn, n) | n)
(
β̃ (v | n)− β (v | pn, n)

)
+O

(
log (L)

Lh

)
.

By Dette et al. (2006, Lemma A.1), if I = 1 and L is sufficiently large, there exists λ ∈ (0, 1) such

that

β̃ (v | n)− β (v | pn, n) = − X (β (v | pn, n) | n)
ξ′ (β (v | pn, n) | pn, n)

−
2X
(
b̃λ | n

)
X
′
(
b̃λ | n

)

(
ξ′
(
b̃λ | pn, n

)
+ λX′

(
b̃λ | n

))2

+
X
2
(
b̃λ | n

)(
ξ′′
(
b̃λ | pn, n

)
+ λX′′

(
b̃λ | n

))

(
ξ′
(
b̃λ | pn, n

)
+ λX′

(
b̃λ | n

))3 ,

where b̃λ := (ξ (· | pn, n) + λX (· | n))−1 (v). It now follows from the above result, (S46), (S47), (S48)

and Lemmas S1 and S2 that

pF ∗ (v | pn)− F ∗ (v | pn) = − g (β (v | pn, n) | n)
ξ′ (β (v | pn, n) | pn, n)

X (β (v | pn, n) | n) +Op

(
log (L)

Lh

)
. (S58)

By (S46),

pg−1 (b | n)− g−1 (b | n) = −H (b | n)
g2 (b | n) −

H (b | n)
g2 (b | n)

(
g (b | n)
pg (b | n) − 1

)
,
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Lemma S1(b) and Lemma S2(c), we have

X (β (v | pn, n) | n) =
ηn (pn, G (β (v | pn, n) | n))
(n− 1) g2 (β (v | pn, n) | n)

H (β (v | pn, n) | n) +Op

(
log (L)

Lh

)
.

Then, by this result and (S58),

pF ∗ (v | pn)− F ∗ (v | pn) = − ηn (pn, G (β (v | pn, n) | n))
(n− 1) ξ′ (β (v | pn, n) | pn, n) g (β (v | pn, n) | n)

H (β (v | pn, n) | n)

+Op

(
log (L)

Lh

)
. (S59)

For b ∈
[
pbn + h,pbn − h

]
, we have

pg (b, n) =
1

L

∑

l:Nl=n

N∗
l∑

i=1

1

h
K

(
Bil − b

h

)
.

By Taylor expansion,

E [pg (β (v | pn, n) , n)] = g (β (v | pn, n) , n) +
1

2
g′′ (β (v | pn, n) | n) rn

(∫
u2K (u) du

)
h2 + o

(
h2
)
.

(S60)

Let

Jl (v, n) := 1 (Nl = n)

N∗
l∑

i=1

1√
h
K

(
Bil − β (v | pn, n)

h

)
−E



1 (Nl = n)

N∗
l∑

i=1

1√
h
K

(
Bil − β (v | pn, n)

h

)


and σ2
g (v, n) := E

[(∑L
l=1

(
Jl (v, n) /

√
L
))2]

= E
[
J2
l (v, n)

]
. Then we can write

√
Lh (pg (β (v | pn, n) , n)− E [pg (β (v | pn, n) , n)]) =

L∑

l=1

Jl (v, n)√
L

.

By LIE and Taylor expansion, we have

σ2
g (v, n) = g (β (v | pn, n) , n)

∫
K2 (u) du+ o (1) (S61)

and
L∑

l=1

E

[∣∣∣∣
Jl (v, n)

σg (v, n)

∣∣∣∣
3
]
= O

(
(Lh)−1/2

)
,

which shows that Lyapunov’s condition holds. By Lyapunov’s central limit theorem (Severini, 2005,
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Theorem 12.2),
∑L

l=1 Jl (v, n) /σg (v, n) →d N(0, 1). By this result, (S61) and Slutsky’s theorem,

√
Lh (pg (β (v | pn, n) , n)− E [pg (β (v | pn, n) , n)]) →d N

(
0, g (β (v | pn, n) , n)

∫
K2 (u) du

)
.

(S62)

By (S42), (S43) and Lemma S2(c),

H (β (v | pn, n) | n) =
pg (β (v | pn, n) , n)− g (β (v | pn, n) , n)

rn
+Op

(
log (L)

L

)
. (S63)

By this result, (S60) and (S62),

√
Lh

(
H (β (v | pn, n) | n)−

1

2
g′′ (β (v | pn, n) | n)

(∫
u2K (u) du

)
h2
)

→d N

(
0,

g (β (v | pn, n) | n)
rn

∫
K2 (u) du

)
.

The conclusion in Part (a) follows from this result and (S59).

It follows from straightforward calculations that E [Jl (v, n) Jl (v
′, n′)] = o (1) for all (v, n) 6=

(v′, n′). The Lyapunov condition for the the multi-dimensional Lyapunov central limit theorem can

also be easily verified. Then by these results,




√
Lh (pg (β (v1 | pn1

, n1) , n1)− E [pg (β (v1 | pn1
, n1) , n1)])

...√
Lh (pg (β (vJ | pnM

, nM ) , nM )− E [pg (β (vJ | pnM
, nM ) , nM )])




→d N







0
...

0


 ,




g (β (v1 | pn1
, n1) , n1)

. . .

g (β (vJ | pnM
, nM ) , nM )



∫

K2 (u) du


 .

The conclusion in Part (b) follows from this result, (S59), (S60) and (S63). �

Proof of Proposition S2. For notational simplicity, write pϑ := pϑ
(

xW

)
. Since Q (·, ·; ·) is contin-

uously differentiable on [ǫ, 1− ǫ]2 ×Θ, under Assumption S3, the uniform convergence

sup
ϑ∈Θ×F

∥∥∥Υ
(

pF
∗
, pp,ϑ

)
− Υ (F ∗,p0,ϑ)

∥∥∥→p 0 (S64)

follows from the consistency of pF
∗

and pp. Let

D0 (ϑ;W) := Υ⊤ (F ∗,p0,ϑ)WΥ (F ∗,p0,ϑ)

and it follows that

ϑ0 = argmin
ϑ∈Θ×F

D0 (ϑ;W0) .
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By the reverse triangle inequality,

∣∣∣∣
√

pD (ϑ;W0)−
√

D0 (ϑ;W0)

∣∣∣∣

≤
(
Υ
(

pF
∗
, pp,ϑ

)
− Υ (F ∗,p0,ϑ)

)⊤
W0

(
Υ
(

pF
∗
, pp,ϑ

)
− Υ (F ∗,p0,ϑ)

)
.

It follows from this result and (S64) that

sup
ϑ∈Θ×F

∣∣∣∣
√

pD (ϑ;W0)−
√

D0 (ϑ;W0)

∣∣∣∣→p 0.

It follows from the reverse triangle inequality and (S64) that

sup
ϑ∈Θ×F

∣∣∣ pD
(
ϑ; xW

)
− pD (ϑ;W0)

∣∣∣→p 0.

It follows from these results and the triangle inequality that

sup
ϑ∈Θ×F

∣∣∣ pD
(
ϑ; xW

)
−D0 (ϑ;W0)

∣∣∣→p 0.

Consistency of pϑ follows from this result and the standard arguments used in the proof of the

consistency of M-estimators (see, e.g., Hansen, 2022, Theorem 22.1). Compactness of Θ × F and

continuity of D0 (·;W0) ensure that the second requirement in the statement of Hansen (2022,

Theorem 22.1) is satisfied.

It follows from consistency of pϑ and the assumption that ϑ0 is an interior point that pϑ satisfies

the FOCs wpa1. Then, we have

op

(
(Lh)−1/2

)
=

∂

∂ϑ
Υ⊤

(
pF
∗
, pp, pϑ

)
xWΥ

(
pF
∗
, pp, pϑ

)

=
∂

∂ϑ
Υ⊤

(
pF
∗
, pp, pϑ

)
xW

{
Υ
(

pF
∗
, pp, pϑ

)
− Υ

(
pF
∗
, pp,ϑ0

)
+ Υ

(
pF
∗
, pp,ϑ0

)}
,

and therefore,

∂

∂ϑ
Υ⊤

(
pF
∗
, pp, pϑ

)
xW

(
Υ
(

pF
∗
, pp, pϑ

)
− Υ

(
pF
∗
, pp,ϑ0

))

= − ∂

∂ϑ
Υ⊤

(
pF
∗
, pp, pϑ

)
xWΥ

(
pF
∗
, pp,ϑ0

)
+ op

(
(Lh)−1/2

)
.

Therefore, by the mean value theorem,

(
∂

∂ϑ
Υ⊤

(
pF
∗
, pp,ϑ0

)
xW

∂

∂ϑ⊤
Υ
(

pF
∗
, pp, ϑ̇

))(
pϑ− ϑ0

)

= − ∂

∂ϑ
Υ⊤

(
pF
∗
, pp,ϑ0

)
xWΥ

(
pF
∗
, pp,ϑ0

)
+ op

(
(Lh)−1/2

)
, (S65)
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where ϑ̇ denotes the mean value. By Proposition S1, the fact that pp − p0 = Op

(
L−1/2

)
and the

mean value theorem,

Υ
(

pF
∗
, pp,ϑ0

)
= Υ

(
pF
∗
, pp,ϑ0

)
− Υ (F ∗,p0,ϑ0)

= Ψ1

(
pF
∗ − F ∗

)
+ op

(
(Lh)−1/2

)
.

Then by this result, (S65), xW →p W0, pF
∗ →p F

∗ and pp →p p0, we have

pϑ− ϑ0 = −
(
Π

⊤
0 W0Π0

)−1
Π

⊤
0 W0Ψ1

(
pF
∗ − F ∗

)
+ op

(
(Lh)−1/2

)
. (S66)

The second conclusion follows from this result and Proposition S1. �

Denote G† (· | n) := pG† (· | n) − G (· | n), G† (·, n) := pG† (·, n) − G (·, n), H† (· | n) := pg† (· | n) −
g (· | n) and H† (·, n) := pg† (·, n) − g (·, n). Let pg′† (· | n), pg′′† (· | n), pg′† (·, n) and pg′′† (·, n) be the first

and second derivatives of pg† (· | n) and pg† (·, n). Let H
′
† (· | n) and H

′′
† (· | n) denote the first and

second derivatives of H† (· | n). The following lemma is a bootstrap analogue of Lemma S2.

Lemma S3. Assume that the assumptions in the statement of Proposition S1 are satisfied. Then

we have the following results. (a)

Pr†

[∣∣∣pp†n − pn

∣∣∣ ≥ αp
†,L

]
= Op

(
L−1

)
,

for some deterministic sequence αp
†,L = O

(√
log (L) /L

)
. (b)

Pr†

[
‖G† (· | n)‖Bn

≥ ᾱ†,L

]
= Op

(
L−1

)
,

for some deterministic sequence ᾱ†,L = O
(√

log (L) /L
)
. (c)

Pr†

[
‖H† (· | n)‖Bn

≥ α†,L

]
= Op

(
L−1

)
,

for some deterministic sequence α†,L = O
(√

log (L) / (Lh)
)

and similar results with deterministic

sequences α′
†,L = O

(√
log (L) / (Lh3)

)
and α′′

†,L = O
(√

log (L) / (Lh5)
)

hold for
∥∥∥H′

† (· | n)
∥∥∥
Bn

and
∥∥∥H′′

† (· | n)
∥∥∥
Bn

.

Proof of Lemma S3. Let

pπ†
n :=

1

L

L∑

l=1

1

(
N †

l = n
)
.
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Then, we can write pq†n = r̃†n/
(
npπ†

n

)
. By Bernstein’s inequality, we have

Pr†

[∣∣∣r̃†n − prn

∣∣∣ ≥ pσr,n

√
2 · log (L)

L

]
= Op

(
L−1

)
. (S67)

By Bernstein’s inequality and (S41),

Pr

[
∣∣pσ2

r,n − σ2
r,n

∣∣ ≥ C

√
log (L)

L

]
= O

(
L−1

)

for some C > 0. Then by this result, (S41), (S67) and the triangle inequality, we have

Pr†



∣∣∣r̃†n − rn

∣∣∣ ≥ 2

√

σ2
r,n + C

√
log (L)

L

√
2 · log (L)

L


 = Op

(
L−1

)
. (S68)

It follows from similar arguments that

Pr†

[∣∣∣pπ†
n − πn

∣∣∣ ≥ απ
†,L

]
= Op

(
L−1

)

for some deterministic sequence απ
†,L = O

(√
log (L) /L

)
. By simple calculation,

Pr†

[∣∣∣∣
πn

pπ†
n

− 1

∣∣∣∣ ≥
απ
†,L

πn − απ
†,L

]
= Op

(
L−1

)
.

It follows from this result, (S68) and

pq†n − qn =
r̃†n − rn
nπn

+
r̃†n
nπn

(
πn

pπ†
n

− 1

)

that Pr†

[∣∣∣pq†n − qn

∣∣∣ ≥ αq
†,L

]
= Op

(
L−1

)
for some deterministic sequence αq

†,L = O
(√

log (L) /L
)
.

The conclusion in Part (a) follows from this result.

By (S67) and the fact that for all x ∈ R and c > 0, |x ∨ (−c)| ≥ c if and only if |x| ≥ c, we have

Pr†

[∣∣∣pr†n − prn

∣∣∣ ≥ pσr,n

√
2 · log (L)

L

]
= Pr†

[∣∣∣r̃†n − prn

∣∣∣ ≥ pσr,n

√
2 · log (L)

L

]

= Op

(
L−1

)
. (S69)

Then it follows from the same arguments as those used to prove (S68) that

Pr†

[∣∣∣pr†n − rn

∣∣∣ ≥ αr
†,L

]
= Op

(
L−1

)
,
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for some deterministic sequence αr
†,L = O

(√
log (L) /L

)
, and by simple calculation,

Pr†

[∣∣∣∣
rn

pr†n
− 1

∣∣∣∣ ≥
αr
†,L

rn − αr
†,L

]
= Op

(
L−1

)
. (S70)

Then we apply Giné and Guillou (2002, Corollary 2.2) with U = 2n, σ2 = n2pπn and t taken to

be C
√
log (L)L for some positive constant C. Let απ

L := σπ,n
√

2 (log (L) /L). Then, by Giné and

Guillou (2002, Corollary 2.2), taking C to be sufficiently large, we have

Pr†

[∥∥∥ pG† (·, n)− pG (·, n)
∥∥∥
Bn

> C

√
log (L)

L

]
1 (|pπn − πn| < απ

L) = Op

(
L−1

)
.

Note that by (S39), we have 1 (|pπn − πn| < απ
L) = 1 wpa1. Therefore,

Pr†

[∥∥∥ pG† (·, n)− pG (·, n)
∥∥∥
Bn

> C

√
log (L)

L

]
= Op

(
L−1

)
,

if C is sufficiently large. The conclusion in Part (a) follows from this result, (S70) and

G† (b | n) =
G† (b, n)

rn
+

pG† (b, n)

rn

(
rn

pr†n
− 1

)
.

The other conclusions follow from using (S70) and Corollary A.2. �

Proof of Proposition S3. Denote

ξ̃† (b | n) := b− ηn (pn, G (b | n))
(n− 1) pg† (b | n)

.

Let Ṽ †
il := ξ̃†

(
B†

il | N
†
l

)
. Let F̃ ∗

† (v, n) be defined by the right hand side of (S15) with pV †
il replaced

by Ṽ †
il and let F̃ ∗

† (v | pn) := F̃ ∗
† (v, n) /rn. Let X† (b | n) := ξ̃† (b | n)− ξ (b | pn, n). Let X′

† (· | n) and

X
′′
† (· | n) denote the first and second derivatives of X† (· | n). Then, we have

X† (b | n) = −ηn (pn, G (b | n))
n− 1

{
1

pg† (b | n)
− 1

g (b | n)

}
, (S71)

X
′
† (b | n) = −D2ηn (pn, G (b | n)) g (b | n)

n− 1

{
1

pg† (b | n)
− 1

g (b | n)

}

+
ηn (pn, G (b | n))

n− 1

{
pg′† (b | n)
pg2† (b | n)

− g′ (b | n)
g2 (b | n)

}
, (S72)
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and

X
′′
† (b | n) = −D2

2ηn (pn, G (b | n)) g2 (b | n) +D2ηn (pn, G (b | n)) g′ (b | n)
n− 1

{
1

pg† (b | n)
− 1

g (b | n)

}

+
2D2ηn (pn, G (b | n)) g (b | n)

n− 1

{
pg′† (b | n)
pg2† (b | n)

− g′ (b | n)
g2 (b | n)

}

+
ηn (pn, G (b | n))

n− 1





pg′′† (b | n) pg2† (b | n)− 2
(

pg′† (b | n)
)2

pg† (b | n)
pg4† (b | n)

−g′′ (b | n) g2 (b | n)− 2 (g′ (b | n))2 g (b | n)
g4 (b | n)

}
. (S73)

Denote

K† (b | n) := ηn

(
pp†n, pG† (b | n)

)
− ηn (pn, G (b | n)) .

By Lemma S3(a,b) and similar arguments as those used to prove (S49),

Pr†

[
‖K† (· | n)‖Bn

> α̃†,L

]
= Op

(
L−1

)
,

for some deterministic sequence α̃†,L = O
(√

log (L) /L
)
. Let T̄† := 1

(
‖K† (· | n)‖Bn

< α̃†,L

)
. Let

(
T†,T

′
†,T

′′
†

)
be defined by the same formula with (K†, α̃†,L) replaced by (H†, α†,L),

(
H

′
†, α

′
†,L

)
and

(
H

′′
† , α

′′
†,L

)
. Let I† := T̄†T†Ṫ†T̈†. Then, we have Pr† [I† = 0] = Op

(
L−1

)
.

Decompose

pF ∗
† (v | pn)− F̃ ∗

† (v | pn) =
pF ∗
† (v, n)− F̃ ∗

† (v, n)

rn
+

pF ∗
† (v, n)

rn

(
rn

pr†n
− 1

)
. (S74)

It now follows that

E†

[(
rn

pr†n
− 1

)2
]

≤
E†

[((
r̃†n − rn

)
∨
(

prn − rn − pσr,n
√

2 · log (L) /L
))2]

(
prn − pσr,n

√
2 · log (L) /L

)2

+1

(
prn ≤ pσr,n

√
2 · log (L)

L

)
E†

[(
rn

pr†n
− 1

)2
]
,

where the second term on the right hand side equals zero wpa1. For the first term, we have

E†



((

r̃†n − rn

)
∨
(

prn − rn − pσr,n

√
2 · log (L)

L

))2

 ≤ E†

[(
r̃†n − rn

)2]
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+ Pr†

[∣∣∣r̃†n − prn

∣∣∣ > pσr,n

√
2 · log (L)

L

](
prn − rn − pσr,n

√
2 · log (L)

L

)2

.

It is easy to check that E†

[(
r̃†n − rn

)2]
= Op

(
L−1

)
. It now follows from this result, (S69) and the

above inequalities that E†

[(
rn/pr†n − 1

)2]
= Op

(
L−1

)
.

Denote δ†L :=
∥∥∥pξ† (· | n)− ξ̃† (· | n)

∥∥∥
Bn

. Then,

∣∣∣ pF ∗
† (v, n)− F̃ ∗

† (v, n)
∣∣∣ ≤ 1

L

∑

l:N†
l
=n

N∗†
l∑

i=1

{
1

(
Ṽ †
il ≤ v + δ†L

)
− 1

(
Ṽ †
il ≤ v − δ†L

)}
.

Let v†n := ξ̃†
(
bn | n

)
and v†n := ξ̃† (bn | n). If I† = 1 and L is large enough, δ†L >

√
log (L) /L,∣∣∣v†n − v

∣∣∣ >
√

log (L) / (Lh) and
∣∣∣v†n − v

∣∣∣ >
√

log (L) / (Lh). By (S72), if I† = 1 and L is large

enough,
∥∥∥X′

† (· | n)
∥∥∥
Bn

is sufficiently small, the inverse β̃† (· | n) := ξ̃−1
† (· | n) exists and β̃† (· | n) is

a strictly increasing function on
[
v†n, v

†
n

]
with β̃†

(
v†n
)
= bn and β̃†

(
v†n | n

)
= bn. Then, when L is

sufficiently large,

I†

∣∣∣ pF ∗
† (v, n)− F̃ ∗

† (v, n)
∣∣∣ ≤ I†

{
G†

(
β̃†

(
v + δ†L | n

)
, n
)
−G†

(
β̃†

(
v − δ†L | n

)
, n
)}

+I†

{
G
(
β̃†

(
v + δ†L | n

)
, n
)
−G

(
β̃†

(
v − δ†L | n

)
, n
)}

. (S75)

By arguments similar to those in the proof of (S57),

I†

∣∣∣G
(
β̃†

(
v + δ†L | n

)
, n
)
−G

(
β̃†

(
v − δ†L | n

)
, n
)∣∣∣ >

√
log (L)

L
,

if L sufficiently large. For the first term on the right hand side of (S75),

I†

{
G†

(
β̃†

(
v + δ†L | n

)
, n
)
−G†

(
β̃†

(
v − δ†L | n

)
, n
)}2

≤
(

sup
(t1,t2)∈[−ǫL,ǫL]

2

|G† (β (v | pn, n) + t1, n)−G† (β (v | pn, n) + t2, n)|
)2

,

for some deterministic sequence ǫL = O
(√

log (L) / (Lh)
)
. By arguments similar to those in the

proof of (S56),

E†

[
sup

(t1,t2)∈[−ǫL,ǫL]
2

|G† (β (v | pn, n) + t1, n)−G† (β (v | pn, n) + t2, n)|
]
= Op

(
L−1/2

(
log (L)

Lh

)1/4
)
.
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By this result and Ledoux and Talagrand (1991, Theorem 6.20),

E†



(

sup
(t1,t2)∈[−ǫL,ǫL]

2

|G† (β (v | pn, n) + t1, n)−G† (β (v | pn, n) + t2, n)|
)2

 = Op

(
L−1

(
log (L)

Lh

)1/2
)
.

It now follows that

E†

[(
pF ∗
† (v, n)− F̃ ∗

† (v, n)
)2]

> E†

[
I†

(
pF ∗
† (v, n)− F̃ ∗

† (v, n)
)2]

+ Pr† [I† = 0]

= Op

(
log (L)

L

)
. (S76)

Then it follows from this result, (S74) and E†

[(
rn/pr†n − 1

)2]
= Op

(
L−1

)
that

E†

[(
pF ∗
† (v | pn)− F̃ ∗

† (v | pn)
)2]

= Op

(
log (L)

L

)
. (S77)

Write

F̃ ∗
† (v | pn) = I† · F̃ ∗

† (v | pn) + (1− I†) F̃
∗
† (v | pn)

= I†

(
G
(
β̃† (v | n) | n

)
−G (β (v | pn, n) | n)

)

+I† ·G (β (v | pn, n) | n) + I† ·
G†

(
β̃† (v | n) , n

)

rn
+ (1− I†) F̃

∗
† (v | pn) . (S78)

By Dette et al. (2006, Lemma A.1), if I† = 1 and L is large enough, there exists λ ∈ (0, 1) such that

β̃† (v | n)− β (v | pn, n) = − X† (β (v | pn, n) | n)
ξ′ (β (v | pn, n) | pn, n)

− 2
X† (bλ | n)X′

† (bλ | n)
(
ξ′ (bλ | pn, n) + λX′

† (bλ | n)
)2

+
X
2
† (bλ | n)

(
ξ′′ (bλ | pn, n) + λX′′

† (bλ | n)
)

(
ξ′ (bλ | pn, n) + λX′

† (bλ | n)
)3 , (S79)

where bλ := (ξ (· | pn, n) + λX† (· | n))−1 (v). By (S71), (S72), (S73), (S79) and the mean value

theorem, we have

I†

(
G
(
β̃† (v | n) | n

)
−G (β (v | pn, n) | n)

)
= I† · g (β (v | pn, n) | n)

(
β̃† (v | n)− β (v | pn, n)

)

+O

(
log (L)

Lh

)

and

I†

(
β̃† (v | n)− β (v | pn, n)

)
= −I† ·

X† (β (v | pn, n) | n)
ξ′ (β (v | pn, n) | pn, n)

+O

(
log (L)

Lh

)
.
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It is easy to check that

I† · X† (β (v | pn, n) | n) = I† ·
ηn (pn, G (β (v | pn, n) | n))H† (β (v | pn, n) | n)

(n− 1) g2 (β (v | pn, n) | n)
+O

(
log (L)

Lh

)
.

By these results and (S78), we have

F̃ ∗
† (v | pn) = −I† ·

ηn (pn, G (β (v | pn, n) | n))H† (β (v | pn, n) | n)
(n− 1) g (β (v | pn, n) | n) ξ′ (β (v | pn, n) | pn, n)

+I† ·G (β (v | pn, n) | n) + I† ·
G†

(
β̃† (v | n) , n

)

rn
+ (1− I†) F̃

∗
† (v | pn) +O

(
log (L)

Lh

)
.

Then, by this result and

pg† (β (v | pn, n) | n) =
pg† (β (v | pn, n) , n)

rn
+

pg† (β (v | pn, n) , n)
rn

(
rn

pr†n
− 1

)
,

we can write

F̃ ∗
† (v | pn) = − ηn (pn, G (β (v | pn, n) | n)) pg† (β (v | pn, n) , n)

(n− 1) ξ′ (β (v | pn, n) | pn, n) g (β (v | pn, n) , n)

+V †
1 + V †

2 + V †
3 + V †

4 + V †
5 +O

(
log (L)

Lh

)
, (S80)

where

V †
1 := (1− I†)

ηn (pn, G (β (v | pn, n) | n)) pg† (β (v | pn, n) , n)
(n− 1) ξ′ (β (v | pn, n) | pn, n) g (β (v | pn, n) , n)

V †
2 := −I† ·

ηn (pn, G (β (v | pn, n) | n)) pg† (β (v | pn, n) , n)
(n− 1) ξ′ (β (v | pn, n) | pn, n) g (β (v | pn, n) , n)

(
rn

pr†n
− 1

)

V †
3 := I†

{
G (β (v | pn, n) | n) +

ηn (pn, G (β (v | pn, n) | n))
(n− 1) ξ′ (β (v | pn, n) | pn, n)

}

V †
4 := I† ·

G†

(
β̃† (v | n) , n

)

rn

V †
5 := (1− I†) F̃

∗
† (v | pn) .

It follows from the Cauchy-Schwarz inequality that

E†

[
(1− I†)

2
pg2† (β (v | pn, n) , n)

]
>

√
Pr† [I† = 0] · E†

[
(pg† (β (v | pn, n) , n)− pg (β (v | pn, n) , n))4

]

+Pr† [I† = 0] pg2 (β (v | pn, n) , n) . (S81)

By the Rosenthal inequality,

E†

[
(pg† (β (v | pn, n) , n)− pg (β (v | pn, n) , n))4

]
= Op

(
(Lh)−2

)
.
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By this result, Pr† [I† = 0] = Op

(
L−1

)
and (S81), we have Var†

[
V †
1

]
= Op

(
L−1

)
. It follows from

similar arguments and E†

[(
rn/pr†n − 1

)2]
= Op

(
L−1

)
that Var†

[
V †
2

]
= Op

(
L−1

)
. If follows from

Var† [I†] = Pr† [I† = 0] · Pr† [I† = 1] = Op

(
L−1

)

that Var†

[
V †
3

]
= Op

(
L−1

)
. By Chernozhukov et al. (2014, Corollary 5.1), we have E

[
‖G (·, n)‖Bn

]
=

O
(
L−1/2

)
and E†

[∥∥∥ pG† (·, n)− pG (·, n)
∥∥∥
Bn

]
= Op

(
L−1/2

)
. By these result and Ledoux and Tala-

grand (1991, Theorem 6.20), we have

Var†

[
V†

4

]
> E†

[(
‖G† (·, n)‖Bn

)2]
= Op

(
L−1

)
.

It is easy to see that since 0 ≤ F̃ ∗
† (v | pn) ≤ n/rn,

Var†

[
V †
5

]
≤ E

[
(1− I†)

2
(
F̃ ∗
† (v | pn)

)2]
> Pr† [I† = 0] = Op

(
L−1

)
.

It follows from the above results, (S77), (S80) and the Cauchy-Schwarz inequality that

Var†

[
pF ∗
† (v | pn)

]
= Var†

[
ηn (pn, G (β (v | pn, n) | n)) pg† (β (v | pn, n) , n)
(n− 1) ξ′ (β (v | pn, n) | pn, n) g (β (v | pn, n) , n)

]
+op

(
(Lh)−1

)
. (S82)

By simple calculation, we have

Var† [pg† (β (v | pn, n) , n)]

=
1

L





1

L

∑

l:Nl=n




N∗
l∑

i=1

1

h
K1

(
Bil, β (v | pn, n) | h,pbn,pbn

)



2

− pg2 (β (v | pn, n) , n)



 .

The conclusion follows from this result, (S82), pg (β (v | pn, n) , n) →p g (β (v | pn, n) , n) and the fact

that

1

Lh

∑

l:Nl=n




N∗
l∑

i=1

K1

(
Bil, β (v | pn, n) | h,pbn,pbn

)



2

→p g (β (v | pn, n) , n)
∫

K2 (u) du.

�
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