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Proof of Lemma 1. (a) follows from LIE and change of variables. (b) is a straightforward extension of

Bickel and Doksum (2015, Proposition 11.3.1), which follows from LIE and (p+ 1)-th order Taylor expansion.

For (c), denote q̄ (V,X | h) := h−1/2W k
p;sV and Q̄ := {q̄ (· | h) : h ∈ H}. Denote PVn f := n−1

∑
i f (Vi, Xi),

PV f := E [f (V,X)] and GVn :=
√
n
(
PVn − PV

)
. Then we have

∥∥GVn ∥∥Q̄ = sup
h∈H

∣∣∣∣∣ 1√
nh

∑
i

(
W k
p;s,iVi − E

[
W k
p;sV

])∣∣∣∣∣ .
Let σ2

Q̄
:= supf∈Q̄PV f2. It follows from LIE and change of variables that σ2

Q̄
= suph∈HE

[
h−1W 2k

p;sgV 2 (X)
]

=

O (1). Assume s = + without loss of generality. By definition and the assumption that K is supported

on [−1, 1], q̄ (v, x | h) = Kkp;− (x/h)h−1/21 (0 < x < h) v. Since Assumption 3 also implies that Kkp;− has

bounded variation ∀k ∈ N. By Giné and Nickl (2015, Proposition 3.6.12),
{
x 7→ Kkp;− (x/h) : h ∈ H

}
is VC-

type with respect to a constant envelope and its VC characteristics are independent of n. By Kosorok

(2007, Lemma 9.6),
{

(x, v) 7→ h−1/21 (0 < x < h) v : h ∈ H
}

is VC-subgraph with an envelope (x, v) 7→

h−1/21
(
0 < x < h

)
|v| and VC index being at most 3. By Kosorok (2007, Theorem 9.3) and Chernozhukov

et al. (2014, Corollary A.1), Q̄ is VC-type with respect to an envelope FQ̄ (v, x) ∝ h−1/21
(
0 < x < h

)
|v|.

By Chen and Kato (2020, Corollary 5.5), E
[∥∥GVn ∥∥Q̄] > σQ̄

√
log (n) + log (n)

(
PV |FQ̄|

r)1/r
n1/r/

√
n, where

PV |FQ̄|
r

= O
(
h/hr/2

)
. (c) follows from Markov’s inequality. �

Proof of Lemma 2. Let L] :=
{
λ ∈ R2du : ‖λ‖ ≤ log (n) /

√
nh
}
. By

maxi ‖Ui‖ /
√
nh > maxi1

(
|Xi| ≤ h

)
‖Ui‖ /

√
n ≤

(∑
i

1
(
|Xi| ≤ h

)
‖Ui‖12

)1/12

/
√
n
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and Markov’s inequality, we have maxi ‖Ui‖ /
√
nh = Op

(
n1/12/n1/2

)
. It follows that maxisupλ∈L]

∣∣λ>Ui∣∣ =

Op
(
log (n)

(
n1/12/n1/2

))
and maxisupλ∈L]

∣∣λ>Ui∣∣ < 1/2 ∀h ∈ H wpa1. Therefore, L] ⊆ L (ϑ), ∀h ∈ H

wpa1. Since S (·, ϑ) is continuous and L] is compact, λ] := argmaxλ∈L]
S (λ, ϑ) exists ∀h ∈ H wpa1. By the

definition of λ] and second-order Taylor expansion,

0 = S (02du , ϑ) ≤ S (λ], ϑ) = 2
(√

nhλ]

)>
U −

(√
nhλ]

)> 1

nh

∑
i

UiU>i(
1 + λ̇>] Ui

)2

(√nhλ])

≤ 2
∥∥∥√nhλ]∥∥∥ ∥∥U∥∥− (√nhλ])>

 1

nh

∑
i

UiU>i(
1 + maxisupλ∈L]

|λ>Ui|
)2

(√nhλ]) , (S1)

where λ̇] is the mean value that lies on the line joining 02du and λ]. Since maxisupλ∈L]

∣∣λ>Ui∣∣ < 1/2 ∀h ∈ H

wpa1, by (S1),

0 ≤ S (λ], ϑ) ≤ 2
∥∥∥√nhλ]∥∥∥∥∥U∥∥− 4

9

(√
nhλ]

)> (
∆UU> −∆UU>

) (√
nhλ]

)
− 4

9

(√
nhλ]

)>
∆UU>

(√
nhλ]

)
,

∀h ∈ H wpa1 and therefore,

%min (∆UU>)
∥∥∥√nhλ]∥∥∥2

≤ 9

2

∥∥∥√nhλ]∥∥∥∥∥U∥∥+
∥∥∆UU> −∆UU>

∥∥∥∥∥√nhλ]∥∥∥2

, (S2)

∀h ∈ H wpa1. Since U = (nh)
−1/2∑n

i=1 (Ui − E [U ]) +
√
nh∆U , it follows from Lemma 1 that

∥∥U∥∥ =

Op

(√
log (n)

)
. It also follows from Lemma 1 that ∆UU>−∆UU> = Op

(√
log (n) /n+ log (n)

(
n1/6/n

))
and

∆UU> = diag
(
ψUU>,+, ψUU>,−

)
+ O

(
h
)
. Since diag

(
ψUU>,+, ψUU>,−

)
is positive definite, %min (∆UU>) is

bounded away from zero when n is sufficiently large. By assumption,
∥∥∥√nhλ]∥∥∥ ≤ log (n). It follows from these

results and (S2) that
√
nhλ] = Op

(√
log (n)

)
. By this result, Pr

[√
nhλ] ≤ log (n) /2, ∀h ∈ H

]
→ 1 and

therefore, wpa1, ∀h ∈ H, λ] is in the interior of L] and the first-order condition is satisfied: ∂S (λ, ϑ) /∂λ|λ=λ]
=

02du . Since S (·, ϑ) is concave, λ] attains supλ∈L(ϑ)S (λ, ϑ) ∀h ∈ H wpa1 and therefore, supλ∈L(ϑ)S (λ, ϑ) =

S (λ], ϑ) ≤ 2
∥∥∥√nhλ]∥∥∥∥∥U∥∥ = Op (log (n)). Denote λ\ :=

√
log (n) / (nh)Û/

∥∥∥Û∥∥∥. It can be shown by us-

ing similar arguments, boundedness of Θ and Ûi = Ui − Giη̂p that maxi

∥∥∥Ûi∥∥∥ /√nh = Op
(
n1/12/n1/2

)
. By

second-order Taylor expansion,

S
(
λ\, ϑ̂p

)
= 2

(√
nhλ\

)>
Û −

(√
nhλ\

)> 1

nh

∑
i

ÛiÛ>i(
1 + λ̇>\ Ûi

)2

(√nhλ\)
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≥ 2
(√

nhλ\

)>
Û −

(√
nhλ\

)> 1

nh

∑
i

ÛiÛ>i(
1−

√
log (n) / (nh)

(
maxi

∥∥∥Ûi∥∥∥))2

(√nhλ\) , (S3)

where λ̇\ is the mean value that lies on the line joining 02du and λ\. Then,
√

log (n)
∥∥∥Û∥∥∥ ≤ S

(
λ\, ϑ̂p

)
+

2

(
(nh)

−1∑
i

∥∥∥Ûi∥∥∥2
)

log (n), ∀h ∈ H, wpa1. By Ûi = Ui − Giη̂p, Lemma 1 and boundedness of Θ, we have

(nh)
−1∑

i

∥∥∥Ûi∥∥∥2

= Op (1). By the definition of ϑ̂p, S
(
λ\, ϑ̂p

)
≤ supλ∈L(ϑ̂p)S

(
λ, ϑ̂p

)
≤ supλ∈L(ϑ)S (λ, ϑ).

Since supλ∈L(ϑ)S (λ, ϑ) = Op (log (n)), it follows that Û = Op

(√
log (n)

)
. Since Û = U −∆G

√
nhη̂p, then,

∥∥∥√nhη̂p∥∥∥√%min (∆
>
G∆G

)
≤
∥∥∥∆G
√
nhη̂p

∥∥∥ ≤ ∥∥∥Û∥∥∥+
∥∥U∥∥ . (S4)

By Lemma 1, ∆G =

[
µ>G,+ µ>G,−

]>
+ Op

(√
log (n) /n+ h

)
.
[
µ>G,+ µ>G,−

]>
has full column rank,

if µD,+ 6= µD,−. By using the fact that |%min (A)− %min (B)| ≤ ‖A− B‖, %min
(

∆
>
G∆G

)
is bounded away

from zero ∀h ∈ H, wpa1. (a) follows easily from this result, (S4) and the fact that
∥∥∥Û∥∥∥ and

∥∥U∥∥ are both

Op

(√
log (n)

)
. By maxi

∥∥∥Ûi∥∥∥ /√nh = Op
(
n1/12/n1/2

)
and the definition of L], maxisupλ∈L]

∣∣∣λ>Ûi∣∣∣ =

Op
(
log (n)

(
n1/12/n1/2

))
and therefore maxisupλ∈L]

∣∣∣λ>Ûi∣∣∣ < 1/2 ∀h ∈ H wpa1. Therefore, L] ⊆ L
(
ϑ̂p

)
,

∀h ∈ H wpa1. Since S
(
·, ϑ̂p

)
is continuous and L] is compact, λ̂] := argmaxλ∈L]

S
(
λ, ϑ̂p

)
exists ∀h ∈ H

wpa1. By the definition of λ̂] and similar arguments used to show (S2), we have %min (∆UU>)
∥∥∥√nhλ̂]∥∥∥ >∥∥∥Û∥∥∥ +

∥∥∥∆̂UU> −∆UU>
∥∥∥ ∥∥∥√nhλ̂]∥∥∥. Since ∆̂UU> −∆UU> = (nh)

−1∑
i

{
Giη̂pU>i + Uiη̂>p G>i + Giη̂pη̂>p G>i

}
, it

follows from Lemma 1 and (a) that ∆̂UU> − ∆UU> = Op

(√
log (n) /n

)
and therefore, ∆̂UU> − ∆UU> =

Op

(√
log (n) /n+ log (n)

(
n1/6/n

))
. Since

∥∥∥√nhλ̂]∥∥∥ ≤ log (n) by construction, it follows from these results

that
√
nhλ̂] = Op

(√
log (n)

)
. Wpa1, ∀h ∈ H, λ̂] is in the interior of L] and the first-order condition

is satisfied: ∂S
(
λ, ϑ̂p

)
/∂λ

∣∣∣
λ=λ̂]

= 02du . It follows from the concavity of S
(
·, ϑ̂p

)
that λ̂] also attains

supλ∈L(ϑ̂p)S
(
λ, ϑ̂p

)
∀h ∈ H wpa1. Then (b) follows from setting λ̂p = λ̂]. (c) and (d) follow from similar

arguments. �

Proof of Lemma 3. It is shown in the proof of Lemma 2 that λ̂p satisfies the first-order condition which

can be written as
∑
i Ûi/

(
1 + λ̂>p Ûi

)
= 02du ∀h ∈ H wpa1. We also showed that maxi

∥∥∥Ûi∥∥∥ /√nh =

Op
(
n1/12/n1/2

)
and
√
nhλ̂p = Op

(√
log (n)

)
. Therefore, we have maxi

∣∣∣λ̂>p Ûi∣∣∣ = op (1). By Ûi = Ui − Giη̂p,

Lemma 1 and boundedness of Θ, we have (nh)
−1∑

i

∥∥∥Ûi∥∥∥3

= Op
(
1 + log (n)

(
n1/4/n

))
and (nh)

−1∑
i

∥∥∥Ûi∥∥∥4

=

Op
(
1 + log (n)

(
n1/3/n

))
. By these results, Lemma 2 and simple algebra, (nh)

−1∑
i ÛiÛ>i /

(
1 + λ̂>p Ûi

)2

=

∆̂UU>+op (1). It is shown in the proof of Lemma 2 that ∆̂UU> = diag
(
ψUU>,+, ψUU>,−

)
+op (1). Therefore,

%min

(
(nh)

−1∑
i ÛiÛ>i /

(
1 + λ̂>p Ûi

)2
)

is bounded away from zero ∀h ∈ H, wpa1. By the implicit function
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theorem, wpa1 ∀h ∈ H, there exists a continuously differentiable function λ (·) defined on some open neigh-

borhood B
(
ϑ̂p

)
of ϑ̂p such that λ̂p = λ

(
ϑ̂p

)
and (nh)

−1∑
i Ui (θ) /

(
1 + λ (θ)

> Ui (θ)
)

= 02du ∀θ ∈ B
(
ϑ̂p

)
.

Since S (·, θ) is concave, S (λ (θ) , θ) = supλ∈L(θ)S (λ, θ) and ϑ̂p = argminθ∈B(ϑ̂p)S (λ (θ) , θ). By the chain rule

and
∑
i Ûi/

(
1 + λ̂>p Ûi

)
= 02du , the first-order condition for ϑ̂p can be written as

∑
i G>i λ̂p/

(
1 + λ̂>p Ûi

)
=

02du , which holds ∀h ∈ H wpa1. By simple algebra we have

02du =
∑
i

Ûi − ÛiÛ>i λ̂p +
Ûi
(
Û>i λ̂p

)2

1 + λ̂>p Ûi

 and 0dϑ =
∑
i

G>i λ̂p − G
>
i λ̂p

(
λ̂>p Ûi

)
1 + λ̂>p Ûi

 . (S5)

By maxi

∣∣∣λ̂>p Ûi∣∣∣ = op (1), (nh)
−1∑

i

∥∥∥Ûi∥∥∥ = Op (1), (nh)
−1∑

i

∥∥∥Ûi∥∥∥3

= Op
(
1 + log (n)

(
n1/4/n

))
and Lemma

2, (nh)
−1/2∑

i

{
Ûi
(
Û>i λ̂p

)2
}
/
(

1 + λ̂>p Ûi

)
= Op

(
υ‡n
)
and (nh)

−1/2∑
i

{
G>i λ̂p

(
λ̂>p Ûi

)}
/
(

1 + λ̂>p Ûi
)

=

Op
(
υ‡n
)
, where υ‡n := log (n) /

√
n + log (n)

2 (
n1/4/n3/2

)
. By these results and Ûi = Ui − Giη̂p, (S5) can be

written as ∆̂UU>
√
nhλ̂p+ ∆G

√
nhη̂p = U +Op

(
υ‡n
)
and ∆

>
G
√
nhλ̂p = Op

(
log (n) /

√
n
)
. By ∆̂UU> −∆UU> =

Op

(√
log (n) /n+ log (n)

(
n1/6/n

))
, ∆G −∆G = Op

(√
log (n) /n

)
and Lemma 2, we have

∆UU>
√
nhλ̂p + ∆G

√
nhη̂p = U +Op

(
υ†n
)
and ∆>G

√
nhλ̂p = Op

(
υ†n
)
. (S6)

Since it follows from Lemma 1 that ∆UU> = diag
(
ψUU>,+, ψUU>,−

)
+O

(
h
)
and ∆G =

[
µ>G,+ µ>G,−

]>
+

O
(
h
p+1
)
, ∆UU> and ∆>G∆−1

UU>∆G are invertible ∀h ∈ H, when n is sufficiently large. (a) follows from

 ∆UU> ∆G

∆>G 0dϑ×dϑ


−1

=

 Q N

N> −O


and (S6). (b) follows from similar arguments. �

Proof of Lemma 4. By Taylor expansion, S
(
λ̂p, ϑ̂p

)
is equal to the sum of 2λ̂>p

(∑
i Ûi
)
−
∑
i

(
λ̂>p Ûi

)2

and

a remainder term that is bounded up to a constant by
∑
i

∣∣∣λ̂>p Ûi∣∣∣3 /(1−
∣∣∣λ̂>p Ûi∣∣∣)3

. By using (nh)
−1∑

i

∥∥∥Ûi∥∥∥3

=

Op
(
1 + log (n)

(
n1/4/n

))
and Lemma 2,

∑
i

∣∣∣λ̂>p Ûi∣∣∣3 = Op

(√
log (n)υ‡n

)
. By these results and maxi

∣∣∣λ̂>p Ûi∣∣∣ =

op (1), S
(
λ̂p, ϑ̂p

)
= 2λ̂>p

(∑
i Ûi
)
−
∑
i

(
λ̂>p Ûi

)2

+ Op

(√
log (n)υ‡n

)
. It was shown in the proof of Lemma

3 that Û = ∆̂UU>
(√

nhλ̂p

)
+ Op

(
υ‡n
)
. It follows from these results, Lemma 2 and ∆̂UU> − ∆UU> =

Op

(√
log (n) /n+ log (n)

(
n1/6/n

))
that S

(
λ̂p, ϑ̂p

)
=
(√

nhλ̂p

)>
∆UU>

(√
nhλ̂p

)
+ Op

(√
log (n)υ†n

)
. By

Lemma 3 and U = Op

(√
log (n)

)
, S
(
λ̂p, ϑ̂p

)
= U>QU+Op

(√
log (n)υ†n

)
. Similarly, we have S

(
λ̃p, ϑ0, ϑ̃p

)
=

U>Q†U+Op

(√
log (n)υ†n

)
. By definition, LRp (ϑ0 | h) = S

(
λ̃p, ϑ0, ϑ̃p

)
−S

(
λ̂p, ϑ̂p

)
. Therefore, LRp (ϑ0 | h) =

S4



U> (Q† −Q)U +Op

(√
log (n)υ†n

)
. Then, by straightforward algebraic calculations,

Q† −Q = ∆−1
UU>

{
∆G
(
∆>G∆−1

UU>∆G
)−1

∆>G −∆G†

(
∆>G†∆

−1
UU>∆G†

)−1

∆>G†

}
∆−1
UU>

= ∆−1
UU>

(
∆G0 −∆G†Φ

−1
†† Φ†0

)(
Φ00 − Φ0†Φ

−1
†† Φ†0

)−1 (
∆>G0 − Φ0†Φ

−1
†† ∆>G†

)
∆−1
UU> . (S7)

Then by this result, (12), (14) and
(

Φ00 − Φ0†Φ
−1
†† Φ†0

)−1

= Σ∆/
(
∆D+

/∆+ −∆D−/∆−
)2

U> (Q† −Q)U =
{

e>du,1Φ−1
±
(
U+/∆+ − U−/∆−

)}2
Σ∆

=
{(
M+/∆+ −M−/∆−

)
−
(
Z+/∆+ −Z−/∆−

)>
γ∆

}2

/Σ∆. (S8)

By using γ∆ = γadj+O
(
h
)
and (11), Σ∆ = ∆E2/ϕ

2 +O
(
h
)
. By

∥∥U∥∥ = Op

(√
log (n)

)
and γ∆ = γadj+O

(
h
)
,

the numerator on the right hand side of the second equality in (S8) is
{

(nh)
−1/2∑

i Ei
}2

+Op
(
log (n)h

)
. Let

q̃ (Ti, Xi | h) := h−1/2Ei/
√

∆E2 and Q̃ := {q̃ (· | h) : h ∈ H}. Then it is clear that
{

(nh)
−1/2∑

i Ei
}2

/∆E2 ={
GTn q̃ (· | h)

}2 and therefore, LRp (ϑ0 | h) =
{
GTn q̃ (· | h)

}2
+ Op

(
log (n)h+

√
log (n)υ†n

)
. Also denote

Q := {q (· | h) : h ∈ H} and D := {q (· | h)− q̃ (· | h) : h ∈ H}. By similar arguments as in the proof of

Lemma 1, Q̃ and Q are both VC-type with respect to the envelopes
(
FQ̃, FQ

)
satisfying FQ̃ (Ti, Xi) ∝

h−1/21
(
|Xi| ≤ h

)
|εi − µε| /

√
infh∈H∆E2 and FQ (Ti, Xi) ∝ h−1/21

(
|Xi| ≤ h

)
|εi − µε| /

√
ξ (|Xi|) f|X| (|Xi|),

respectively. By change of variables, PTF 12
Q̃
� PTF 12

Q = O
(
h/h6

)
. By Chernozhukov et al. (2014, Lemma

A.6), D is VC-type with respect to the envelope FD = FQ̃ + FQ. Let

σ2
D := sup

f∈D
PT f2 = sup

h∈H
E
[
(q (T,X | h)− q̃ (T,X | h))

2
]
.

By LIE and the fact that (Wp;+ +Wp;−)
2

= Kp;+ (|X| /h),

E
[
(q (T,X | h)− q̃ (T,X | h))

2
]

= E

 1

h
(Wp;+ +Wp;−)

2
(ε− µε)2

 1√
∆E2

− 1√
ξ (|X|) f|X| (|X|)ω0,2

p;+

2


=

∫ ∞
0

1

h
Kp;+

( z
h

)2

√ξ (z) f|X| (z)

∆E2
− 1√

ω0,2
p;+

2

dz. (S9)

Note that ∆E2 =
∫∞

0
h−1Kp;+ (z/h)

2
ξ (z) f|X| (z) dz and therefore, it follows from mean value expansion

and (S9) that σ2
D = O

(
h

2
)
. By Chen and Kato (2020, Corollary 5.5), E

[∥∥GTn∥∥D] > σD
√

log (n) +

log (n) ‖FD‖PT ,12 n
1/12/

√
n and therefore, E

[∥∥GTn∥∥D] = O
(√

log (n) · h+ log (n)
(
n1/12/n1/2

))
. Let σ2

Q̃
:=

supf∈Q̃PT f2 and σ2
Q := supf∈QPT f2. It is easy to see that PT f2 = 1, if f ∈ Q or f ∈ Q̃ and therefore,

S5



σ2
Q̃

= σ2
Q = 1. Similarly, E

[∥∥GTn∥∥Q̃] > σQ̃
√

log (n) + log (n)
∥∥FQ̃

∥∥
PT ,12

n1/12/
√
n and a similar inequality

with Q̃ replaced by Q holds. Therefore, E
[∥∥GTn∥∥Q̃] � E

[∥∥GTn∥∥Q] = O
(√

log (n)
)
. Then it follows from

Markov’s inequality that
{
GTn q̃ (· | h)

}2 −
{
GTn q (· | h)

}2
= Op

(
log (n)h+ log (n)

3/2 (
n1/12/n1/2

))
. The

conclusion follows from this result and LRp (ϑ0 | h) =
{
GTn q̃ (· | h)

}2
+Op

(
log (n)h+

√
log (n)υ†n

)
. �

Proof of Lemma 5. Let rn :=
√
n̄/log (n), V i := Vi1 (Vi > rn), V i := Vi1 (Vi ≤ rn) and

(
V , V

)
be defined

similarly. Then write n̄−1/2
∑
i

(
W k
p;s,iVi − E

[
W k
p;sV

])
=W+W, whereW := n̄−1/2

∑
i

(
W k
p;s,iV i − E

[
W k
p;sV

])
and W := n̄−1/2

∑
i

(
W k
p;s,iV i − E

[
W k
p;sV

])
. Let σ2

W := Var
[
h−1/2W k

p;sV
]
. By σ2

W ≤ E
[
h−1W 2k

p;sV
2
]
, LIE

and change of variables, σ2
W = O (1).

∣∣W k
p;s,iV i − E

[
W k
p;sV

]∣∣ is bounded by an upper bound that is pro-

portional to rn. Let c > 0 denote an arbitrary positive constant. By Giné and Nickl (2015, Theorem 3.1.7

and Equation 3.24) with u = log (nc), Pr
[
|W| ≥

(√
2cσ2
W + c/3

)√
log (n)

]
≤ 2n−c. By σ2

W = O (1) and

taking c to be sufficiently large, W = O?p

(√
log (n)

)
. By Markov’s inequality, the fact that V

2 ≤ V 2 |V/rn|3

and change of variables, Pr
[∣∣W∣∣ ≥√log (n)

]
≤ E

[
h−1W 2k

p;sV
2
]
/log (n) ≤ E

[
h−1W 2k

p;s |V |
5
]
/
(
r3
n · log (n)

)
=

O
(
log (n) /n̄3/2

)
and therefore, W = O?p

(√
log (n)

)
. �

Proof of Lemma 6. ByMarkov’s inequality, Pr
[
n̄−1

∑
i ‖Ui‖

5
> ∆‖U‖5 + c

]
is bounded above by the fourth

central moment of n̄−1
∑
i ‖Ui‖

5 divided by c4, where c > 0 is an arbitrary positive constant. By straightfor-

ward calculation and change of variables, its fourth central moment is bounded above by 3n−2
(

E
[
h−2 ‖U‖10

])2

+

n−3E
[
h−4 ‖U‖20

]
= O

(
n̄−2

)
. Therefore, n̄−1

∑
i ‖Ui‖

5
= O?p (1) and by maxi ‖Ui‖ ≤

(∑
i ‖Ui‖

5
)1/5

,

maxi ‖Ui‖ = O?p
(
n̄1/5

)
. Then, by this result and the definition of L], Pr

[
maxisupλ∈L]

∣∣λ>Ui∣∣ ≥ 1/2
]
is

bounded above by Pr
[
maxi ‖Ui‖ ≥

(√
n̄/log (n)

)
/2
]

= O
(
n̄−2

)
. Therefore, L] ⊆ L (ϑ) wp? and λ] :=

argmaxλ∈L]
S (λ, ϑ) exists wp?. By using U = O?p

(√
log (n)

)
and ∆UU> −∆UU> = O?p

(√
log (n) /n̄

)
, which

follow from Lemma 5, and repeating the steps in the proof of Lemma 2,
√
n̄λ] = O?p

(√
log (n)

)
. Then,

√
n̄λ] ≤ log (n) /2 wp? and S (λ], ϑ) = supλ∈L(ϑ)S (λ, ϑ) = O?p (log (n)). By similar arguments, boundedness

of Θ and Ûi = Ui − Giη̂p, maxi

∥∥∥Ûi∥∥∥ = O?p
(
n̄1/5

)
and n̄−1

∑
i

∥∥∥Ûi∥∥∥2

= O?p (1). By repeating the steps in the

proof of Lemma 2,
√

log (n)
∥∥∥Û∥∥∥ ≤ supλ∈L(ϑ)S (λ, ϑ) + 2

(
n̄−1

∑
i

∥∥∥Ûi∥∥∥2
)

log (n) = O?p (log (n)). (a) follows

from (S4), U = O?p

(√
log (n)

)
, Û = O?p

(√
log (n)

)
and the fact that %min

(
∆
>
G∆G

)
is bounded away from

zero wp?, which follows from Lemmas 1 and 5. The proof of (b) parallels that of Lemma 2(b) and uses the

fact ∆̂UU> −∆UU> = O?p

(√
log (n) /n̄

)
. (c) and (d) follow from similar arguments. �

Proof of Lemma 7. A decomposition LR? = n̄
(
R̃2

1 + 2R̃1R̃2 + 2R̃1R̃3 + R̃2
2

)
can be derived. R̃k is a

homogeneous k-th order polynomial of
(
Ak, Akl, Aklm, Ck,n, Ck;l,n

)
so that R̃1 = O?p

(√
log (n) /n̄

)
, R̃2 =

O?p (log (n) /n̄) and R̃3 = O?p

(
(log (n) /n̄)

3/2
)
. −M is a projection matrix onto the orthogonal complement

of the column space of Π†. Let $0 be a vector spanning the one-dimensional orthogonal complement of
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the column space of Π† so that −M = $0

(
$>0 $0

)−1
$>0 . Let $ := $0/

√
$>0 $0. Then, $>$ = 1 and

−M = $$>. The expressions of
(
R̃1, R̃2, R̃3

)
can be readily obtained in a special case of Ma (2017).

Algebraic calculations in Ma (2017) show that by setting R̃1 := $(k)Ak,

R̃2 :=
1

2
M(mk)$(n)AmnAk−$(n)Andϑ+aAdϑ+a+

{
1

3
αvmnM(vl)M(mk)$(n) − γm;v,oΩ(on)P(nk)M(ml)$(v)

}
×AlAk +

{(
γdϑ+a;v,m[dϑ + a, v]

)
Ω(mo)P(ok)$(v) − αvmdϑ+aM(vk)$(m)

}
AkAdϑ+a − Ω(ko)P(om)$(l)

× Cl,kAm +
{
αv dϑ+a dϑ+b$(v) − γdϑ+a;dϑ+b,mΩ(mn)$(n)

}
Adϑ+aAdϑ+b + Ω(km)$(m)Cdϑ+a,kAdϑ+a, (S10)

where γdϑ+a;v,m[dϑ + a, v] denotes γdϑ+a;v,m + γv;dϑ+a,m and R̃3 to be given by the formula provided in

Ma (2017, Appendix D.3), we have LR? = n̄
(
R̃2

1 + 2R̃1R̃2 + 2R̃1R̃3 + R̃2
2

)
. (S10) is formally the same as

Ma (2017, (D.2)) with terms that depend on the second derivatives removed. The expression of R̃3 is also

essentially the same as that of R3 in Ma (2017, Appendix D.3) with terms that depend on the higher-order

derivatives removed and hence omitted for brevity.

Let αk := ∆V(k) and Åk := Ak − αk. By replacing Ak with Åk + αk, we have R̃1 = R̃10 + R̃11, where

R̃10 := $(k)αk and R̃11 := $(k)Åk. Similarly, we replace Ak with Åk+αk to decompose R̃2 = R̃22 +R̃21 +R̃20

so that R̃2k is a homogeneous (2− k)−th order polynomial of α1, ..., α2du :

R̃21 :=
1

2
M(mk)$(n)Amnαk−$(n)Andϑ+aαdϑ+a+

2

3
αvmnM(vl)M(mk)$(n)Ålαk−γm;v,oΩ(on)P(nk)M(ml)$(v)

×
(
Ålαk[l, k]

)
+
{(
γdϑ+a;v,m[dϑ + a, v]

)
Ω(mo)P(ok)$(v) − αvmdϑ+aM(vk)$(m)

}(
αkÅdϑ+a[k, dϑ + a]

)
− Ω(ko)P(om)$(l)Cl,kαm +

{
αv dϑ+a dϑ+b$(v) − γdϑ+a;dϑ+b,mΩ(mn)$(n)

}(
αdϑ+aÅdϑ+b[dϑ + a, dϑ + b]

)
+ Ω(km)$(m)Cdϑ+a,kαdϑ+a, (S11)

R̃22 is defined by the right hand side of (S10) with Ak replaced by Åk and R̃20 := R̃2−R̃22−R̃21 = O
(
‖∆U‖2

)
.

Let R0 := R̃10 + R̃20, R1 := R̃11 + R̃21 and R2 := R̃22. We decompose R̃3 = R̃33 + R̃32 + R̃31 + R̃30 in

a similar manner and let R3 := R̃33. R3 is given by the formula of R̃3 with Ak replaced by Åk. Then,

let R := R1 + R2 + R3. By Lemma 5, R̃1 + R̃2 + R̃3 = R0 + R + O?p (‖∆U‖ log (n) /n̄) and therefore,

LR? = n̄ (R0 +R)
2

+O?p
(
υ]n
)
.

Let F :=
(
Wp ⊗ U,Wp,

(
W 2
p;+,W

2
p;−
)> ⊗ (U,U2

)
,
(
W 3
p;+,W

3
p;−
)> ⊗ U3

)
. Fi is defined analogously and

let df denote the dimension of F . It can be shown that
√
n̄R := hn

(
F
)
, where F := n̄−1/2

∑
i (Fi − E [F ]) and

hn is a cubic polynomial. E.g.,
√
n̄$(k)Åk = $̃>∆

−1/2

UU>
(
n̄−1/2

∑
i (Ui − E [U ])

)
, where $̃ := S

[
$> 0>dz

]>
.

It can be shown that other terms on the right hand side of (S11) can also be written as linear functions
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of F . Similarly, it can be shown by tedious algebra that
√
n̄R2 and

√
n̄R3 are homogenous quadratic

and cubic polynomials of F . A more lucid proof of this fact uses the observation that `p
(
ϑ̂p | h

)
=

infθ2supλ2
2
∑
i log

(
1 + λ>2 Ūi (θ2)

)
. Let Mi (θ0, θ1) := Wp,i ⊗ (Yi − θ0Di − θ1). By rearranging the mo-

ment conditions, `p
(
ϑ̂p | h

)
= infθ0,θ1,θ2supλ1,λ2

2
∑
i log

(
1 + λ>1Mi (θ0, θ1) + λ>2 Ūi (θ2)

)
. Let Wi (θ) :=(

Mi (θ0, θ1) , Ūi (θ2)
)
. ϑ̂p and λ̂ :=

(
λ̂1, λ̂2

)
satisfy the first-order conditions wp?:

∑
i

Mi

(
ϑ̂p,0, ϑ̂p,1

)
1 + λ̂>Wi

(
ϑ̂p

) = 02,
∑
i

Ūi
(
ϑ̂p,2

)
1 + λ̂>Wi

(
ϑ̂p

) = 02dz ,
∑
i

(Wp,i ⊗ (Di, 1))
>
λ̂1

1 + λ̂>Wi

(
ϑ̂p

) = 02,
∑
i

Ḡ>i λ̂2

1 + λ̂>Wi

(
ϑ̂p

) = 0dz .

The third condition implies that λ̂1 = 02 wp?. Therefore, `p
(
ϑ̂p | h

)
= 2

∑
i log

(
1 + λ̂>2 Ūi

(
ϑ̂p,2

))
and the

second and fourth conditions are
∑
i Ūi

(
ϑ̂p,2

)
/
(

1 + λ̂>2 Ūi
(
ϑ̂p,2

))
= 02dz and

∑
i Ḡ>i λ̂2/

(
1 + λ̂>2 Ūi

(
ϑ̂p,2

))
=

0dz , which coincide with the first-order conditions of infθ2supλ2

∑
i log

(
1 + λ>2 Ūi (θ2)

)
. Therefore, we have

`p

(
ϑ̂p | h

)
= infθ2supλ2

2
∑
i log

(
1 + λ2Ūi (θ2)

)
. By expansion and Lemma 6, we get approximations for λ̂2,

ϑ̂p,2 and `p
(
ϑ̂p | h

)
which are similar to (27) and (28). Then it is clear that by replacing sample averages

with sums of their centered versions and population counterparts we can get further approximations which

are polynomials in n̄−1/2
∑
i

(
F̄i − E

[
F̄
])
, where

(
F̄i, F̄

)
are defined by the formulae of (Fi,F) with (Ui, U)

replaced by
(
Ūi, Ū

)
. Similarly, the stochastic expansion of `p

(
ϑ0, ϑ̃p | h

)
should involve only terms in F .

Let κj (V ) denote the j-th cumulant of a random variable V . We follow arguments in the proof of Calonico

et al. (2022, Theorem S.1) and apply Skovgaard (1986, Theorem 3.4) with s = 4 to Sn := B−1/2F where

B := Var [F ] /h. For any t ∈ Rdf with ‖t‖ = 1, by change of variables and calculation of the moments (see,

e.g., DiCiccio et al., 1988, Page 12), κ3

(
t>Sn

)
= E

[(
t>Sn

)3]
= O

(
n̄−1/2

)
, κ4

(
t>Sn

)
= E

[(
t>Sn

)4] −
3
(

E
[(
t>Sn

)2])2

= O
(
n̄−1

)
and ρs,n (t) := max

{∣∣κ3

(
t>Sn

)∣∣ /3!,
√
|κ4 (t>Sn)| /4!

}
= O

(
n̄−1/2

)
, uniformly

in t. Condition I and II of Skovgaard (1986, Theorem 3.4) are satisfied by taking an (t) ∝
√
n̄ and εn = n̄−3/2.

Let Ψ̂V (t) := E
[
exp

(
it>V

)]
denote the characteristic function of a random vector V , where i :=

√
−1.

Let Fs :=
(
Wp;sU,Wp;s,W

2
p;s

(
U,U2

)
,W 3

p;sU
3
)
, s ∈ {−,+}. Then, Ψ̂F (t) = E

[
exp

(
it>+F+

)
1 (X ≥ 0)

]
+

E
[
exp

(
it>−F−

)
1 (X < 0)

]
, where (t−, t+) denote corresponding coordinates of t. By change of variables,

E
[
exp

(
it>+F+

)
1 (X ≥ 0)

]
= h (fX (0)E+ (t+) +O (h)) + Pr [X > h], where E+ is the characteristic function

of Kp;+ (V ) (U, 1), Kp;+ (V )
2 (
U,U2

)
, Kp;+ (V )

3
U3, where (V,U) has the joint density given by (v, u) 7→

1 (0 ≤ v ≤ 1) fU |X (u | 0). A similar result holds for E
[
exp

(
it>−F−

)
1 (X < 0)

]
with E− (t−) defined similarly.

Therefore, Ψ̂F (t) = 1−Pr [−h < X ≤ h]+hfX (0) (E+ (t+) + E− (t−))+O
(
h2
)
. By Assumption 5, the vector-

valued functions (v, u) 7→
(

1,
(
Kp;+ (v) ,Kp;+ (v)

2
,Kp;+ (v)

3
)
⊗
(
1, u, u2, u3

))
are linearly independent. By

invoking the same arguments as in the proof of Calonico et al. (2022, Lemma S.9), ∀ε > 0, ∃cε > 0 such

that sup‖t‖>ε |E+ (t+)| < 1− cε. A similar result holds for E−. Then by these results, ∀ε > 0, ∃cε > 0 such
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that sup‖t‖>ε

∣∣∣Ψ̂F (t)
∣∣∣ < 1− cεh, when n is sufficiently large. It follows from this result and arguments in the

proof of Calonico et al. (2022, Theorem S.1) that ∀δ > 0, ∃cδ > 0 such that sup‖t‖>δ
√
n̄

∣∣∣Ψ̂Sn (t)
∣∣∣ ≤ (1− cδh)

n

when n is sufficiently large. It is also easy to see that ∀δ > 0, (1− cδh)
n ≤ ε

df/2+2
n , when n is sufficiently

large. Therefore, Condition III′′α of Skovgaard (1986, Theorem 3.4 and Remark 3.5) is satisfied with α = 1.

Verification of Condition IV of Skovgaard (1986, Theorem 3.4) follows from essentially the same calculations

and arguments in the proof of Calonico et al. (2022, Theorem S.1). Now all conditions for Skovgaard (1986,

Theorem 3.4) are verified. It shows that Sn admits a valid Edgeworth expansion, i.e., conditions (3.1), (3.2)

and (3.3) of Skovgaard (1981) are satisfied with Un = Sn, s = 4, βs,n = n̄−1 and the Edgeworth expansion

holds uniformly over the class of all convex sets in Rdf . Note that we can write
√
n̄R = hn

(
B1/2Sn

)
. Then

we apply Skovgaard (1981) to show that the Edgeworth expansion is preserved by smooth transformations.

Condition (3.4) of Skovgaard (1981) is satisfied with gn taken to be x 7→ hn
(
B1/2x

)
whose the gradient

at zero ∇gn (0) is given by ∇gn (0) = B1/2
(
$̃>∆

−1/2

UU> , 0
>
df−2du

)>
+ O (‖∆U‖) by the chain rule. Then we

apply Skovgaard (1981, Theorem 3.2) to fn (Sn) := B−1
n gn (Sn), where B2

n := ∇gn (0)
>∇gn (0). Then, B2

n =

$̃>∆
−1/2

UU> (Var [U ] /h) ∆
−1/2

UU> $̃+O (‖∆U‖) = 1+O (‖∆U‖). Condition I of Skovgaard (1981, Assumption 3.1)

is satisfied with p = 4. Condition II of Skovgaard (1981, Assumption 3.1) is satisfied with λn = O
(
n̄−1/2

)
so

that λp−1
n = o

(
n̄−1

)
. Now all conditions for Skovgaard (1981, Theorem 3.2) are verified. It is left to compute

the approximate cumulants.

Then we calculate the formal cumulants of fn (Sn) = B−1
n

√
n̄R. In the calculations, we repeatedly use

formulae for moments of products of sample averages (e.g., DiCiccio et al., 1988, Page 12) and Lemma 1. By

definition, E [R1] = 0. We calculate E [R2], let the remainder term absorb the terms that involve α1, ..., α2du

and get E [R2] = n̄−1κ̄1 +O (‖∆U‖ /n) where κ̄1 := αmnkM(mk)$(n)/6− Ω(ko)P(om)$(l)γm;l,k. By formulae

for third moments and Lemma 1, E [R3] = O
(
n̄−2

)
. Therefore, κ1

(√
n̄R
)

= κ̃1,n+O
(
n̄−1/2 ‖∆U‖h+ n̄−3/2

)
with κ̃1,n := n̄−1/2κ̄1 . For the second cumulant, by definition, κ2 (R) = E

[
R2
]
−(E [R])

2 and by formulae for

fifth and sixth moments and Lemma 1, E
[
R2
]

= E
[
R2

1

]
+ 2 ·E [R1R2] + 2 ·E [R1R3] + E

[
R2

2

]
+O

(
n̄−3

)
. By

R1 = R̃11 + R̃21 and calculation, E
[
R2

1

]
= E

[
R̃2

11

]
+2 ·E

[
R̃21R̃11

]
+O

(
n̄−1 ‖∆U‖2

)
, E [R1R2]+E [R1R3] =

E
[
R̃11R2

]
+ E

[
R̃11R3

]
+ O

(
n̄−2 ‖∆U‖

)
. Then by calculation, E

[
R̃2

11

]
= n̄−1 + O

(
‖∆U‖2 /n

)
and 2 ·

E
[
R̃21R̃11

]
= n̄−1κ̃21,n+O

(
‖∆U‖2 /n

)
, where κ̃21,n := αmnoM(no)M(mk)αk/3−2γl;dϑ+a,kΩ(km)M(ml)αdϑ+a.

Then, E
[
R2

1

]
= n̄−1 (1 + κ̃21,n)+O

(
n̄−1 ‖∆U‖2

)
. Calculation of 2·E

[
R̃11R2

]
+2·E

[
R̃11R3

]
+E

[
R2

2

]
follows

from replication of calculations in Ma (2017) and we can directly use the results therein. By calculations in

Ma (2017), we have

2 · E
[
R̃11R2

]
+ 2 · E

[
R̃11R3

]
+ E

[
R2

2

]
= n̄−2

8∑
j=1

κ̄2j +O
(
n̄−2 ‖∆U‖h+ n̄−3

)
,
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for some bounded constants κ̄21, ..., κ̄28, e.g., κ̄21 := αvmnM(vo)M(ml)M(nk)αklo/3−αvmdϑ+aM(vo)M(mn)αon dϑ+a+

αndϑ+a dϑ+bM(nm)αmdϑ+a dϑ+b and the O
(
n̄−2 ‖∆U‖h+ n̄−3

)
remainder collects terms that depend on

α1, ..., α2du and higher-order terms from the fourth moment calculation. The expressions of κ̄22, ..., κ̄28 are also

easily obtained fromMa (2017) and hence omitted. Therefore, κ2

(√
n̄R
)

= κ̃2,n+O
(
‖∆U‖2 + n̄−1 ‖∆U‖+ n̄−2

)
,

where κ̃2,n := 1 + κ̃21,n + κ̃22,n and κ̃22,n := n̄−1
(∑8

j=1 κ̄2j − κ̄2
1

)
. By definition, κ3 (R) = E

[
R3
]
− 3 ·

E [R] E
[
R2
]

+ 2 (E [R])
3 and by E [R] = E [R2] +O

(
n̄−2

)
, E [R2] = O

(
n̄−1

)
, E
[
R2
]

= E
[
R2

1

]
+O

(
n̄−2

)
and

E
[
R3
]

= E
[
R3

1

]
+3 ·E

[
R2R

2
1

]
+O

(
n̄−3

)
, which follows from formulae for higher moments, we have κ3 (R) =

E
[
R3

1

]
− 3

(
E
[
R2R

2
1

]
− E [R2] E

[
R2

1

])
+O

(
n̄−3

)
. It is easy to check that E

[
R3

1

]
= E

[
R̃3

11

]
+O

(
n̄−2 ‖∆U‖

)
,

E
[
R2R

2
1

]
= E

[
R2R̃

2
11

]
+ O

(
n̄−2 ‖∆U‖

)
. By these results and E

[
R2

1

]
= E

[
R̃2

11

]
+ O

(
n̄−1 ‖∆U‖

)
, κ3 (R) =

E
[
R̃3

11

]
− 3

(
E
[
R2R̃

2
11

]
− E [R2] E

[
R̃2

11

])
+ O

(
n̄−3 + n̄−2 ‖∆U‖

)
. Calculation and expansion of E

[
R̃3

11

]
−

3
(

E
[
R2R̃

2
11

]
− E [R2] E

[
R̃2

11

])
follows from replication of calculations in Ma (2017). For example, by cal-

culation using formulae for moments (DiCiccio et al., 1988),

E
[
R̃3

11

]
= n−2

(
E

[(
h−1$(k)V(k) −$(k)αk

)3
])

= n−2E

[(
h−1$(k)V(k)

)3
]

+O
(
n̄−2 ‖∆U‖h

)
,

and the O
(
n̄−2 ‖∆U‖h

)
remainder collects all terms in the expansion of the third moment which depend

on α1, ..., α2du . Note that we can write E
[
h−1

(
$(k)V(k)

)3]
= $(k)$(l)$(m)αklm in coordinate notations.

Similarly, we calculate E
[
R2R̃

2
11

]
−E [R2] E

[
R̃2

11

]
. We note that coefficients of terms of order n̄−2 in E

[
R̃3

11

]
−

3
(

E
[
R2R̃

2
11

]
− E [R2] E

[
R̃2

11

])
are formally the same as those of the leading terms in the calculation of the

formal third cumulant in Ma (2017). Calculations in Ma (2017) show that the sum of these coefficients

are exactly zero and therefore, the leading term vanishes so that κ3

(√
n̄R
)

= O
(
‖∆U‖ /

√
n̄+ n̄−3/2

)
. By

this result, the fact that κ4 (R) = E
[
R4
]
− 3

(
E
[
R2
])2 − 4 · E [R]κ3 (R) + 2 (E [R])

4, E [R] = O
(
n̄−1

)
,

R = R̃11 + R̃21 +R2 +R3 and standard calculations,

κ4 (R) = E
[
R4
]
− 3

(
E
[
R2
])2

+O
(
n̄−3 ‖∆U‖+ n̄−4

)
=

{
E
[
R̃4

11

]
− 3

(
E
[
R̃2

11

])2
}

+ 4
{

E
[
R2R̃

3
11

]
− 3 · E

[
R2R̃11

]
E
[
R̃2

11

]}
+ 6

{
E
[
R2

2R̃
2
11

]
− E

[
R2

2

]
E
[
R̃2

11

]}
+ 4

{
E
[
R2R̃

3
11

]
− 3 · E

[
R2R̃11

]
E
[
R̃2

11

]}
+O

(
n̄−3 ‖∆U‖+ n̄−4

)
. (S12)

And by standard calculations,

E
[
R̃4

11

]
− 3

(
E
[
R̃2

11

])2

= n−3

(
E

[(
h−1$(k)V(k) −$(k)αk

)4
]
− 3

(
E

[(
h−1$(k)V(k) −$(k)αk

)2
])2

)

= n−3

(
E

[(
h−1$(k)V(k)

)4
]
− 3

(
E

[(
h−1$(k)V(k)

)2
]))

+O
(
n̄−3 ‖∆U‖h

)
,

S10



and the O
(
n̄−3 ‖∆U‖h

)
remainder collects all terms that depend on α1, ..., α2du . Similarly, we also calculate

E
[
R2R̃

3
11

]
− 3 · E

[
R2R̃11

]
E
[
R̃2

11

]
, E
[
R2

2R̃
2
11

]
− E

[
R2

2

]
E
[
R̃2

11

]
and E

[
R2R̃

3
11

]
− 3 · E

[
R2R̃11

]
E
[
R̃2

11

]
on

the right hand side of the second equality in (S12), ignore small-order terms that depend on α1, ..., α2du

and take the sum of the leading terms. We do not need to rework on the calculations since they are for-

mally the same as those done in Ma (2017). Calculations in Ma (2017) show that the sum of the leading

terms on the right hand side of (S12) is exactly zero so that it follows from this result and (S12) that

κ4

(√
n̄R
)

= O
(
n̄−1 ‖∆U‖+ n̄−2

)
. By previous calculations and Bn = 1 + O (‖∆U‖), we get the approxi-

mate cumulants for fn (Sn): κ1 (fn (Sn)) = B−1
n κ̃1,n +O

(
n̄−1/2 ‖∆U‖h+ n̄−3/2

)
, κ2 (fn (Sn)) = B−2

n κ̃2,n +

O
(
‖∆U‖2 + n̄−1 ‖∆U‖+ n̄−2

)
, κ3 (fn (Sn)) = O

(
‖∆U‖ /

√
n̄+ n̄−3/2

)
and κ4 (fn (Sn)) = O

(
n̄−1 ‖∆U‖+ n̄−2

)
.

Let φ
(
· | µ, σ2

)
denote the PDF of N

(
µ, σ2

)
. By applying Skovgaard (1981, Theorem 3.2) to fn (Sn) =

B−1
n

√
n̄R,

Pr
[
n̄ (R0 +R)

2 ≤ x
]

=

∫
|t+(
√
n̄R0)/Bn|≤√x/Bn

φ
(
t | B−1

n κ̃1,n, B
−2
n κ̃2,n

)
dt+O

(
‖∆U‖ /

√
n̄+ n̄−3/2

)
, (S13)

uniformly in x > 0. By using the recurrence properties of non-central χ2 (Cohen, 1988) and mean value

expansion, we have ∂F (x | λ) /∂λ|λ=λ = −xfχ2
1

(x) + O
(
λ
)
. By this result, B2

n = 1 + O (‖∆U‖), change of

variables and mean value expansion,

∫
|t+(
√
n̄R0)/Bn|≤√x/Bn

φ
(
t | B−1

n κ̃1,n, B
−2
n κ̃2,n

)
dt =

∫
|t|≤
√
x/κ̃2,n

φ
(
t |
(√

n̄R0 + κ̃1,n

)
/
√
κ̃2,n, 1

)
dt

= F

(
x

κ̃2,n
|
(√
n̄R0 + κ̃1,n

)2
κ̃2,n

)
= Fχ2

1
(x)− xfχ2

1
(x)

((√
n̄R̃10 + κ̃1,n

)2

+ κ̃21,n + κ̃22,n

)
+O

(
ν]n
)
. (S14)

By (S13) and (S14),

Pr
[
n̄ (R0 +R)

2 ≤ x
]

= Fχ2
1

(x)− C̃ pre
p (n, h)xfχ2

1
(x) +O

(
ν]n
)
, (S15)

where C̃ pre
p (n, h) := n̄R̃2

10 + 2
√
n̄R̃10κ̃1,n + κ̃21,n + n̄−1

∑8
j=1 κ̄2j . By tedious and lengthy algebra, we

can directly show that R̃2
10 = B†p − B‡p and

∑8
j=1 κ̄2j =

∑4
j=1

(
V †p,j − V ‡p,j

)
+ O (h) and 2

√
n̄R̃10κ̃1,n +

κ̃21,n = O (h ‖∆U‖). By calculating E [LR?] with arguments used repeatedly in previous proofs, we find

that C̃ pre
p (n, h) is just the leading term in the expansion E [LR?] − 1 = C̃ pre

p (n, h) + o
(
υ\n
)
, where υ\n :=

‖∆U‖+ n̄ ‖∆U‖2 + n̄−1. We use the fact that `p
(
ϑ̂p | h

)
= infθ2supλ2

2
∑
i log

(
1 + λ>2 Ūi (θ2)

)
and an alter-

native expression for LR? = n̄
(˜̀? − ̂̀?) to get a more lucid proof.

We consider the singular value decomposition of ∆
−1/2

ŪŪ> (−∆Ḡ) such that S̄>∆
−1/2

ŪŪ> (−∆Ḡ) T̄ =

[
Λ̄ 0dz×dz

]>

S11



where S̄>S̄ = I2dz , T̄>T̄ = Idz and Λ̄ is a dz-dimensional diagonal matrix. We apply the rotation by

V̄i (θ2) := Γ̄Ūi (θ2) where Γ̄ := S̄>∆
−1/2

ŪŪ> so that `p
(
ϑ̂p | h

)
= infθ2supλ2

2
∑
i log

(
1 + λ>2 V̄i (θ2)

)
and calcu-

lations from Matsushita and Otsu (2013) can be applied. Also denote V̄i := Γ̄Ūi, H̄i := Γ̄
(
−Ḡi

)
(V̄ and H̄

defined similarly) and Ω̄ :=
(
Λ̄T̄>

)−1. Then it follows that ∆V̄V̄> = I2dz×2dz and

 −∆V̄V̄> ∆H̄

∆>H̄ 0dz×dz


−1

=


0dz×dz 0dz×dz Ω̄>

0dz×dz −Idz 0dz×dz

Ω̄ 0dz×dz Ω̄Ω̄>

 =

 − (Γ̄>)−1
Q̄Γ̄−1 −

(
Γ̄>
)−1

N̄

−N̄>Γ̄−1 Ō

 . (S16)

Let
(
Aa
‡, A

ab
‡ , A

abc
‡ , Ca,s

‡ , Ca;b,s
‡

)
,
(
αa
‡, α

ab
‡ , α

abc
‡ , αabcd

‡

)
and

(
γa,s‡ , γa;b,s‡ , γa,s;b,t‡ , γa;b;c,s

‡

)
be defined by the same

formulae as those of
(
Ak, Akl, Aklm, Ck,n, Ck;l,n

)
,
(
αk, αkl, αklm, αklmn

)
and

(
γk,n, γk;l,n, γk,n;l,o, γk;l;m,n

)
, with

(V,H,Vi,Hi) replaced by
(
V̄, H̄, V̄i, H̄i

)
. The leading terms in the stochastic expansion of n̄−1`p

(
ϑ̂p | h

)
is given by n̄−1 ̂̀? = R̃dz+a

‡1 R̃dz+a
‡1 + 2R̃dz+a

‡1 R̃dz+a
‡2 + 2R̃dz+a

‡1 R̃dz+a
‡3 + R̃dz+a

‡2 R̃dz+a
‡2 , where the expressions of(

R̃dz+a
‡1 , R̃dz+a

‡2 , R̃dz+a
‡3

)
are readily obtained in a special case of Matsushita and Otsu (2013) when the moment

conditions are linear in parameters. E.g., R̃dz+a
‡1 := Adz+a

‡ ,

R̃dz+a
‡2 := −1

2
Adz+b
‡ Adz+a dz+b

‡ +
1

3
αdz+a dz+b dz+c
‡ Adz+b

‡ Adz+c
‡ − Ω̄(st)Cdz+a,s

‡ At‡ + Ω̄(st)γdz+a;dz+b,s
‡ Adz+b

‡ At‡

and the expression of R̃dz+a
‡3 is omitted for brevity (see Matsushita and Otsu, 2013, A.1). Let Åa

‡ := Aa
‡−αa

‡.

We again replace Aa
‡ by Åa

‡ + αa
‡ to obtain R̃dz+a

‡1 = R̃dz+a
‡11 + R̃dz+a

‡10 , R̃dz+a
‡2 = R̃dz+a

‡22 + R̃dz+a
‡21 + R̃dz+a

‡20

and R̃dz+a
‡3 = R̃dz+a

‡33 + R̃dz+a
‡32 + R̃dz+a

‡31 + R̃dz+a
‡30 . Then by standard calculations, E

[
n̄−1 ̂̀?] is equal to

the sum of R̃dz+a
‡10 R̃dz+a

‡10 , R̃dz+a
‡10 E

[
R̃dz+a
‡22

]
, E
[
R̃dz+a
‡11 R̃dz+a

‡21

]
, E
[
R̃dz+a
‡11 R̃dz+a

‡11

]
and 2 · E

[
R̃dz+a
‡11 R̃dz+a

‡22

]
+ 2 ·

E
[
R̃dz+a
‡11 R̃dz+a

‡33

]
+ E

[
R̃dz+a
‡22 R̃dz+a

‡22

]
with an o

(
υ\n
)
remainder term. By inverting using the second equality

of (S16), R̃dz+a
‡10 R̃dz+a

‡10 = αdz+a
‡ αdz+a

‡ = Q̄(ab)ῩaῩb. By calculation and ∆V̄V̄> = I2dz×2dz , E
[
R̃dz+a
‡11 R̃dz+a

‡11

]
=

n̄−1dz + O
(
‖∆U‖2 /n

)
. It is easy to calculate that E

[
R̃dz+a
‡22

]
= −n̄−1αdz+a dz+b dz+b

‡ /6 − Ω̄(st)γt;dz+a,s
‡ +

O (‖∆U‖ /n). Then by (S16),

R̃dz+a
‡10 E

[
R̃dz+a
‡22

]
= −n̄−1

(
1

6
ῩabcQ̄(ab)Q̄(cd)Ῡd + Γ̄a;b,sN̄(as)Q̄(bc)Ῡc

)
+ o

(
υ\n/n̄

)
.

By calculation and using (S16), E
[
R̃dz+a
‡11 R̃dz+a

‡21

]
= n̄−1ῩabcQ̄(ab)Q̄(cd)Ῡd/6 + o

(
υ\n/n̄

)
. By calculation in

Matsushita and Otsu (2013, A.4),

2 · E
[
R̃dz+a
‡11 R̃dz+a

‡22

]
+ 2 · E

[
R̃dz+a
‡11 R̃dz+a

‡33

]
+ E

[
R̃dz+a
‡22 R̃dz+a

‡22

]
= n̄−2

8∑
j=1

κ̄‡2j + o
(
υ\n/n̄

)
,
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where the constants are defined by

(κ̄†21, κ̄‡22, κ̄‡23, κ̄‡24, κ̄‡25, κ̄‡26, κ̄‡27, κ̄‡28) :=

(
1

2
ῩabcdQ̄(ab)Q̄(cd),−1

3
ῩabcQ̄(ad)Q̄(be)Q̄(cf)Ῡdef ,

2Γ̄a;b;c,sN̄(as)Q̄(bc),−Γ̄a;b,sQ̄(ac)Q̄(bd)N̄(es)Ῡcde,−Γ̄a,s;b,tQ̄(ab)Ō(st)

Γ̄a;c,sQ̄(ab)Q̄(cd)Ō(st)Γ̄b;d,t,−Γ̄a;c,sN̄(at)Q̄(cd)N̄(bs)Γ̄b;d,t, Γ̄a;c,sN̄(as)Q̄(cd)N̄(bt)Γ̄b;d,t
)
.

Note that (κ̄†21, κ̄‡22, κ̄‡23, κ̄‡25) =
(
V ‡p,1,V

‡
p,2,V

‡
p,3,V

‡
p,4

)
. Therefore,

E
[
n̄̂̀?] = dz + n̄B‡p − Γ̄a;b,sN̄(as)Q̄(bc)Ῡc + n̄−1

8∑
j=1

κ̄‡2j + o
(
υ\n
)
.

Let κ̄†2j be defined by the formula of κ̄‡2j with
(
Ῡ, Q̄, N̄, Ō, Γ̄

)
replaced by (Υ,Q†,N†,O†,Γ†) and also

(κ̄†21, κ̄†22, κ̄†23, κ̄†25) =
(
V †p,1,V

†
p,2,V

†
p,3,V

†
p,4

)
. By following the same steps, we get a similar expansion for

E
[
n̄˜̀?]. And, then we have E

[
n̄
(˜̀? − ̂̀?)]− 1 = C̃ pre

p (n, h) + o
(
υ\n
)

C̃ pre
p (n, h) = n̄

(
B†p −B‡p

)
− Γk;l,u

† N
(ku)
† Q

(lm)
† Υm + Γ̄a;b,sN̄(as)Q̄(bc)Ῡc + n̄−1

8∑
j=1

(κ̄†2j − κ̄‡2j) .

It is easy to see that by Lemma 1, Γk;l,u
† � Γ̄a;b,s = O (h). Therefore, Γk;l,u

† N
(ku)
† Q

(lm)
† Υm � Γ̄a;b,sN̄(as)Q̄(bc)Ῡc =

O (‖∆U‖h), κ̄†24 � κ̄‡24 = O (h) and κ̄†26 � κ̄†27 � κ̄†28 � κ̄‡26 � κ̄‡27 � κ̄‡28 = O
(
h2
)
. It follows from

these results that C̃ pre
p (n, h) = C pre

p (n, h) +O
(
‖∆U‖h+ n−1

)
.

It is easily seen that the result (S13) with the weak inequality replaced by a strict inequality still holds

(see Skovgaard, 1981, Theorem 3.2). By LR? = n̄ (R0 +R)
2

+O?p
(
υ]n
)
and the fact (21),

∣∣∣Pr [LR? ≤ x]− Pr
[
n̄ (R0 +R)

2 ≤ x
]∣∣∣ ≤ Pr

[∣∣∣n̄ (R0 +R)
2 − x

∣∣∣ ≤ c1υ]n]+ c2

(
log (n) /n̄3/2

)
= O

(
υ]n
)
,

(S17)

where the equality follows from (S13) and boundedness of φ (· | κ̃1,n, κ̃2,n). The conclusion follows from (S15),

(S17) and C̃ pre
p (n, h) = C pre

p (n, h) +O
(
‖∆U‖h+ n−1

)
. �
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