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Proof of Lemma 1. (a) follows from LIE and change of variables. (b) is a straightforward extension of
Bickel and Doksum (2015, Proposition 11.3.1), which follows from LIE and (p 4 1)-th order Taylor expansion.
For (c), denote ¢ (V,X | h) == h™'/2?WEV and Q = {q(- | h) : h € H}. Denote P} f :=n=1Y, f (V;, X),
PVf =E[f(V,X)] and G} = /n (P}, —P"). Then we have

1G4 = sup Wi Vi~ E[WEV])].

1
b | 2

Let 0125 = supfe,jIP’Vf2. It follows from LIE and change of variables that a% = supp el [h_leQf;gvz (X)] =
O (1). Assume s = + without loss of generality. By definition and the assumption that K is supported
on [-1,1], g(v,z | h) = IC’I‘;F (x/h)h=1/21(0 < x < h)v. Since Assumption 3 also implies that IC’;? has
bounded variation Vk € N. By Giné and Nickl (2015, Proposition 3.6.12), {z — IC’;;7 (z/h): h € H} is VC-
type with respect to a constant envelope and its VC characteristics are independent of n. By Kosorok
(2007, Lemma 9.6), {(z,v)+— h~Y?1(0 <z <h)v:h € H} is VC-subgraph with an envelope (z,v)
h %1 (0 < < h)|v| and VC index being at most 3. By Kosorok (2007, Theorem 9.3) and Chernozhukov
et al. (2014, Corollary A.1), 9 is VC-type with respect to an envelope Fg (v,z) o i (O <x< E) [v].
By Chen and Kato (2020, Corollary 5.5), E {HGXHQ] < 0q+/1og (n) +log (n) (PY |Fa|") Y n/" /\/n, where
PV |Fa|” = O (E/y/ 2). (c) follows from Markov’s inequality. n

Proof of Lemma 2. Let £; := {)\ € R%u ;||\ < log(n) /\/nh}. By

1/12
max; [|[U;]| /vVnh < max;1 (|X;] < R) |Us]| /y/n < (Zl (1X:| <) ||Uz-||12> /i
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and Markov’s inequality, we have max; [|U;]| /v nh = O, (ﬁl/u/@l/z)‘ It follows that max;supyc, AT | =
O, (log (n) (@12 /n'/?)) and max;supyez, |ANTU;| < 1/2 Vh € H wpal. Therefore, £; C L(9), Vh € H
wpal. Since S (-,9) is continuous and £y is compact, Ay = argmaxyc, S (A, ) exists Vh € H wpal. By the

definition of A4 and second-order Taylor expansion,

0=S(o2du,z9)gS(Aﬁ,ﬁ):Q(mM)Tﬁ—(\/%A,i)T ’;Lz(luAuTTu)Q (MM)
B + AU

_ U
= HMMH e = (\/TE/\u)T % zz: (1 + maxiszz:iez:n |)\TU¢‘)2 (M)\ﬁ) o

where }\ﬁ is the mean value that lies on the line joining 024, and Ay. Since max;sup e, |)\TZ/{Z-| <1/2VheH

wpal, by (S1),

. T T
0<S(\,0) <2 H\/%AﬂH ]| - % (\/%Au) (B — D) (\/@Au) - g (\/%Au) A (\/%Aﬂ) ,
Vh € H wpal and therefore,

2
)

[Vamx||" < 3 Vi 12l + e — v | |[VaRg

Omin (AL{Z/IT) (SQ)

Vh € H wpal. Since U = (nh) ? 27, (U — E[U]) + vnhAy, it follows from Lemma 1 that U] =
O, ( log (n)) It also follows from Lemma 1 that Ay — Ay = O, (\/log (n) /n+log (n) (ﬁl/G/@)> and
Ay = diag (Yyur 4, Yuur .~ ) + O (h). Since diag (Yypr 4, Yyyr ) is positive definite, gmin (Aggy7) is

bounded away from zero when n is sufficiently large. By assumption, ||vnh\; H <log (n). It follows from these

results and (S2) that vnh)y = O, ( log (n)) By this result, Pr [\/%)\ﬁ <log(n) /2, Vh € ]HI] — 1 and
therefore, wpal, Vh € H, A4 is in the interior of Ly and the first-order condition is satisfied: 9.5 (A, ) /8)\|)\:/\'i =
024, - Since S (+,9) is concave, Ay attains supycz(9)S (A, ) Vh € H wpal and therefore, supycz(9)S (A, ) =
S (A, 0) <2 H\/ﬁ)\ﬁH ||| = Op (log (n)). Denote Ay = \/WLA{/ HLA{H It can be shown by us-

ing similar arguments, boundedness of © and ZZ = U; — G;7)p that max; LA{l /vnh = O, (ﬁl/u/ﬂl/Q). By
second-order Taylor expansion,
~ T T 1 U
$ (A 9y) =2(Vihag) A= (Vi) | =S " | (Vahay)
nh 2
i (1 + AJZ/{i
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T T uiuiT
- (MAH) “ (M)\h) % ; (1 — /log (n) / (nh) (maxi U ))2 (\/%)\h) -
where }‘h is the mean value that lies on the line joining 024, and A;. Then, \/WHZ:{\H <S ()‘h75p> +
2 ()" %,

(nh)il >
Since sup ez 9)S (A, ¥) = O (log (n)), it follows that U= O, ( log (n)) Since U = U — Ag v nhi),, then,

Us

2 .
> log (n), Vh € H, wpal. By U; = U; — G;7j,, Lemma 1 and boundedness of ©, we have

~ 112 ~ ~ ~
Ui|| = Op(1). By the definition of ¥,, S (Ah,ﬁp> < sup)\eﬁ(gp)s ()\,19P> < suprep()S (A, 9).

] e (5552) = [ < ]« . o

By Lemma 1, Ag = [ D }T + O, (\/IOg(T/E—f—E). { WL ul }T has full column rank,
if up.+ # pp,—. By using the fact that |opin (A) — Onin (B)| < [|A — BJ|, Onin (Z;Zg) is bounded away
from zero Vh € H, wpal. (a) follows easily from this result, (S4) and the fact that HZ/AIH and [[U|| are both
Op( log (n)) By max;
O, (log (n) ('/*?/n'/2)) and therefore max;supye z, ‘)\TLAli

Us

/Vnh = O, (@'/*?/n'/?) and the definition of Ly, Max;Sup e, ’/\TLAQ

< 1/2 Vh € H wpal. Therefore, £y C L (@),
Vh € H wpal. Since S (-,1/9\,,) is continuous and Ly is compact, Xﬁ = argmax)\eLnS (A,@;) exists Vh € H
|
|V | Since Aur = Buarr = (nh) ™ S {GiaUT + Ui G + il 61, it
follows from Lemma 1 and (a) that Ay — Dyt = Op( log (n) /Q) and therefore, Ayyr — Ayt =
Oy (V1o () i +log () (7/°/n) ). Since Va3,

that vnhAy = O, (\/log (n)) Wpal, Vh € H, Xti is in the interior of £y and the first-order condition

wpal. By the definition of Xﬁ and similar arguments used to show (S2), we have omin (Ay7)

o]+ [Buar = v

‘ <log (n) by construction, it follows from these results

is satisfied: 05 </\,1/9\p) /8)\‘/\ 5 = 024,. It follows from the concavity of S (~,1§p) that Xti also attains
=Ag
sup)\eﬁ(gp)s (A,@,,) Vh € H wpal. Then (b) follows from setting Xp = Xu. (c) and (d) follow from similar

arguments. |

Proof of Lemma 3. It is shown in the proof of Lemma 2 that :\\p satisfies the first-order condition which
/Vnh =
=0, (1). By Us = U; — Gillp,
- O, (1 +log (n) (7*/*/n)) and (nh)~" >
O, (1 +log (n) (7*/3/n)). By these results, Lemma 2 and simple algebra, (nh)~' Y, Ui/ (1 + X;—LZY -

can be written as ), @/ (1+X;ﬁi) = 0gq4, Vh € H wpal. We also showed that max; Z/A{Z

O, (7'/12/n!/?) and vnhX, = O, ( log (n)) Therefore, we have max;

AU

N 4
Lemma 1 and boundedness of ©, we have (nh) ™" > ||Us U;

Ayt +o0, (1). It is shown in the proof of Lemma 2 that Ay = diag (YuuT 4+ YuuT ) +0p (1). Therefore,
~ o~ ~ o~ 2
Onin ((nh)l > uu;/ (1 + )\;,FL{Z) > is bounded away from zero Vh € H, wpal. By the implicit function
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theorem, wpal Vh € H, there exists a continuously differentiable function A () defined on some open neigh-
borhood B (5,,) of 9, such that A, = A (3,,) and (nh) 1S, U; (0) / (1 2 0) U, (0)) = 0pq, V9 € B (3,,).
Since S (-, 0) is concave, S (A (0) ,0) = supye )5S (A, 0) and ﬁp = argminQEB(@))S (A (6),6). By the chain rule
and ), LA{Z/ (1 + X;LA{Z) = 0Og4,, the first-order condition for 1/9\1, can be written as ) ng,,/ (1 + X;ZZ) =

024, , which holds Vh € H wpal. By simple algebra we have

(S5)

MU =0, (1), (nh) ', 1t || = 0, (1), (nh) ™' S, ||t T O, (1 +log (n) (@/*/n)) and Lemma
2, () (@5,) )/ (14 358) = 0, (o) and (a2 5, {07R, () }/ (14 332) =
O, (v}), where v} = log(n) //0 + log (n)? (ﬁ1/4/ﬂ3/2). By these results and Uf; = U; — GiTp, (S5) can be
written as Ayt \/mp +AgVnhij, = U+ O, (v}) and Zg \/7%3\\1, = O, (log (n) /\/n). By Ay — Ay =

Op (er log (n) (ﬁl/G/Q)), Ag —Ag =0, (\/M) and Lemma 2, we have

By max;

Ay Vnh, + AgVnhij, = U + 0, (v}) and AfvVnhA, = 0, (v}) . (S6)

-
Since it follows from Lemma 1 that A;q,m = diag ('ll)UUT7+7 d)UUT7_) +0 (E) and Ag = { né N ue } +

(0] (EPH), Ay and AgA;&TAg are invertible Vh € H, when n is sufficiently large. (a) follows from

-1

Ayt Ag Q N
AL Odyxdy NT -0
and (S6). (b) follows from similar arguments. [ |

S N N N2
Proof of Lemma 4. By Taylor expansion, S (/\p, ﬁp) is equal to the sum of 2\ ] (ZZ Lli) -3, (A;L{i) and

|3 A \3 -
aremainder term that is bounded up to a constant by Y-, [AJ U;| / (1 — |\ U ) . By using (nh) ™" Yol =
~ o~ |3 ~ o~
O, (1 +1log (n) (ﬁ1/4/n)) and Lemma 2, Y-, (A U;| = O, (\/log (n)vi) By these results and max; |\ U;| =

0p (1), 8 (N, 0,) = 247 (Z.th) - i (M) z/?i)2 + 0, (Viog (n)u} ). Tt was shown in the proof of Lemma
3 that U = Ay~ (\/%Xp) + 0, (vi). Tt follows from these results, Lemma 2 and Ayyr — Ayger =
Op (\/erlog (n) (ﬁl/G/ﬂ)) that 5 (Xpﬁp) = ( "h)‘p)TAuuT (\/mp) +0p (\/mvl) By
Lemma 3 and I = O, ( Tog (n)), S (Xp, 5p) =U' QU+0, (\/mv;). Similarly, we have S (X,,, 9o, 5p) -
U' QiUd+0, (v/log (n)v},). By definition, L, (o | h) = § (X, 90,3, ) =5 (3., ). Therefore, LR, (9o | k) =
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u' Qi — QU+ O, («/1og (n)UL) Then, by straightforward algebraic calculations,

UuuT uuT (21788 uuT

_ — -1 - - o
Q-Q = A {Ag (AGATAG) A — Ag, (AETA y Ag‘r) A;}A 1

-1
= Al (86, — A6, 071010 ) (@00 — P @7 r0) (G, — P07 ) Ar. (ST)

-1
Then by this result, (12), (14) and (@00 — (I)OT(I)T_TI‘I’TO) =3A/ (AD+ /AL — Api/A_)Q

{eq, 195" (U+/AL — Hf/A—)}Z Xa

— {(H+/A+ —M_JA) = (/A —Z AL M}2 /SA. (S8)

u' Qi -Qu

By using 7a = 7aqj+O () and (11), £a = Ag2/p*+0 (h). By HHH =0, ( log (n)) and YA = Yaqj+O (h),
the numerator on the right hand side of the second equality in (S8) is {(nh)71/2 > &-}2 +0, (log (n) k). Let
G (T, X; | h) == h~/2&;/\/Bgz and Q = {G (- | h) : h € H}. Then it is clear that {(nh)_l/Q ) gi}Q /Agz =
{GLq(-| h)}2 and therefore, LR, (99 | h) = {GLq(- | h)}2 + Oy (log (n)h+ \/MUL). Also denote
Q= {q(|h):heH} and © = {q(-|h)—G(-| h): h€H}. By similar arguments as in the proof of
Lemma 1, 9 and Q are both VC-type with respect to the envelopes (FQ,FQ) satisfying Fg (T}, X;) o
E21(1X:| < Rl — pel /v/inFrendBez and Fo (T3, X;) o< B 21 (IXa] < B) e — pel //E XD Fixe) (KD,
respectively. By change of variables, PTF 5%22 =< PTFL = O (h/R°). By Chernozhukov et al. (2014, Lemma

A.6), D is VC-type with respect to the envelope F'p = Fg + Fq. Let
0% = supP” 2 = supE | (¢ (T, X | h) = 4 (T, X | n))*].

fe® heH

By LIE and the fact that (W, + Wp._)* = Kyt (|X| /R),

E

E[(a(T, X [h) = §(T.X | )]

S| =

2 2 1 1
(Wi + Wy )™ (€ = hie) -
) (\/A£2 \/5(\X|)f|X| (|X|)w2{i)

x e e ) 2
[ G (220 ) o

Note that Agz = [~ A7 Kpy (z/h)* € (2) fix| (z)dz and therefore, it follows from mean value expansion

and (S9) that 03 = O (EQ). By Chen and Kato (2020, Corollary 5.5), E[[|GZ||5] < oov/log(n) +

log (n) || Fo |[pr 15, n'/*?/y/n and therefore, E [||GL | 5] = O (\/log (n) - h + log (n) (ﬁ1/12/ﬂ1/2)). Let 03 =
suprQIE”Tf2 and 0 = sup;cqP? f2. It is easy to see that PTf? = 1,if f € Qor f € 9 and therefore,
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orf:l = 04 = 1. Similarly, E [HGZHQ] < 05+/log (n) + log (n) ||FDH]P7T b n!/12/, /7 and a similar inequality

with 9 replaced by 9 holds. Therefore, E {H } { } ( log (n)) Then it follows from
Markov’s inequality that {GZq(-|h) } —{GLq(-| h)} = 0, (log (n) T + log (n)*/? (ﬁ1/12/@1/2)). The
conclusion follows from this result and LR, (9o | h) = {GLq (- | h)}2 + 0, (log (n) h + +/log (n)v};) [ |

Proof of Lemma 5. Let r, := \/n/log (n), V; = Vi1 (V; > r,), V, == V;1(V; <r,) and (K, V) be defined
similarly. Then write n=Y/2 Y, (W}, ,Vi — E [WEV]) = WHW, where W .= n~Y/2 Y, (WE,V; — E [WEV])

pisi pis,i
and W= n"12%, (WE .V, —E [W’f V]). Let o}, == Var [h='2W}V]. By o}, < E[h'W2kV?], LIE
and change of variables, 0‘2,\, =0(1 | p iV —E [Wk ” is bounded by an upper bound that is pro-
portional to r,. Let ¢ > 0 denote an arbitrary positive constant. By Giné and Nickl (2015, Theorem 3.1.7
and Equation 3.24) with v = log (n¢), Pr Uw\ > ( 2002ﬂ+c/3) log (n)} < 2n7° By oy, = O(1) and
taking c to be sufficiently large, W = Oy ( log (n)) By Markov’s inequality, the fact that v’ < v’ |V/7“n|3
and change of variables, Pr UW‘ > /log (n)} <E [h_le%’;VQ} Jlog (n) < E {h_lW;’; |V|5} /(r3 -log(n)) =
O (log (n) /7*/?) and therefore, W = O}, ( log (n)) [ |

Proof of Lemma 6. By Markov’s inequality, Pr [ I 1° > Ajs + c} is bounded above by the fourth
central moment of i1 Y, |[24:]| divided by ¢*, where ¢ > 0 is an arbitrary positive constant. By straightfor-
ward calculation and change of variables, its fourth central moment is bounded above by 3n =2 (E [h_Q ]| 10} ) 2+
n—3E [h*‘* ||U||2°] — O(n2). Therefore, n=' Y, U] = O3 (1) and by max; |t < (Zi ||ul-||5)1/5,
max; |[U;]| = O, (n'/%). Then, by this result and the definition of Ly, Pr {maxisup)\eﬁu INTU| > 1/2} is
bounded above by Pr [max; [[;|| > (v//log (n)) /2] = O (n~2). Therefore, £; C L£(J) wp* and Xy =
argmaxyc ., S (A, V) exists wp*. By using U=0; ( log (n)) and Ay — Ay = O} ( log (n) /ﬁ), which
follow from Lemma 5, and repeating the steps in the proof of Lemma 2, v/ii\; = Oy ( log (n)) Then,
Vi < log(n) /2 wp* and S ()\ﬁ, V) = supeg )5 (A, 9) = Oy (log( )). By similar arguments, boundedness
of © and U; = U; — GiTlp, max; =0} (n 1/5) and 7 = O (1). By repeating the steps in the

1,

proof of Lemma 2, y/log (n) HZ,{H < Supyep(9)S (A, 9) +2 (n—l Zz

from (S4), U = O} ( log (n)), U= o, ( log (n)) and the fact that omin (Z;Zg) is bounded away from

log (n) = O;; (log (n)). (a) follows

zero wp*, which follows from Lemmas 1 and 5. The proof of (b) parallels that of Lemma 2(b) and uses the

fact Ay — Mgy = Oy ( log (n) /ﬁ) (c) and (d) follow from similar arguments. [

Proof of Lemma 7. A decomposition LR* = n (R% +2R1Ry 4+ 2R Rs + Rg) can be derived. Ry is a
homogeneous k-th order polynomial of (Ak,Ak',Ak'm,Ck7”7C’k§"") so that Ry = o, ( log (n) /T_L)7 Ry =
Oy, (log (n) /n) and R3 = Oy ((log (n) /ﬁ)g/z). —M is a projection matrix onto the orthogonal complement

of the column space of 1I;. Let wy be a vector spanning the one-dimensional orthogonal complement of
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the column space of Il; so that —M = wj (wOTwo)fl wOT. Let w = wo/\/ng—wo. Then, w'w = 1 and
—M = ww'. The expressions of (Rl,Rg,Rg) can be readily obtained in a special case of Ma (2017).

Algebraic calculations in Ma (2017) show that by setting Ry = w® A¥,

RQ — EM(mk)w(n)AmnAk7w(n)And19+aAd19+a+ {]‘avmnM(vl)M(mk)w(n) _ ,Ym;v,OQ(on)P(nk)M(ml)w(v)}
2 3
> AlAk + {(,Yd,9+a;v,m[d19 + a,v]) Q(mo)P(ok)w(v) o a'umd79+aM(vk)w(m)} AkAd79+a o Q(ko)P(om)w(l)

% Cl7kAm + {av dy+a dg—&-bw(v) _ ,yd19+a;d19+b7m9(mn)w(n)} Ad19+aAd19+b + Q(km)w(m)cdg-i-mkAdg-i-a’ (SlO)

where y®+@v My + a,v] denotes %0 TaVm 4 Avidotam and Rs to be given by the formula provided in
Ma (2017, Appendix D.3), we have LR* = @ (Rf + 2R Ry + 2R Ry + R%) (510) is formally the same as
Ma (2017, (D.2)) with terms that depend on the second derivatives removed. The expression of Rs is also
essentially the same as that of Rz in Ma (2017, Appendix D.3) with terms that depend on the higher-order
derivatives removed and hence omitted for brevity.

Let ok = Ay and Ak = Ak ok, By replacing A¥ with Ak + a®, we have Ry = Ry + RH, where
Rlo = w®a* and Rn = k) Ak, Similarly, we replace Ak with Ak +ak to decompose Rg = Rzz +R21 —|—R20

so that Ry, is a homogeneous (2 — k) —th order polynomial of o', ..., a2%:

RQl — EM(mk)w(n)Amnak_w(n)And19+aoéd19+a+gavmnM(vl)M(mk)w(n)Alak_,ym;v,OQ(on)P(nk)M(ml)w(U)
2 3
« (/ﬂllak[l, k]) + {(,qu9+a;v,m[d19 +a, 1}]) Q(mo)plok) o (v) _ avmd,9+aM(vk)w(m)} (ak/old“’Jra[k,dﬂ + a])
o Q(kO)P(Om)w(l)Cl’kam + {OZU dy+a d0+bw(v) o ,ydg-l-a;dg—i-b,mQ(mn)w(n)} (adﬁ-i-ajidﬁ-ﬁ-b[dﬁ +a, dy + b})

+ Q(Icm)zv(m)Ccl@—',-a,koédﬂ+a7 (Sll)

Rso is defined by the right hand side of (S10) with A* replaced by A% and Rog == Ry— Roy— R = O (||AZ,{H2)
Let Ry = Rw + Rgo, R, = ]:211 + ]:221 and Ry = Rgg. We decompose ]?3 = ]?33 + ]?32 + Rgl + 1?30 in
a similar manner and let R := Rss. Rj is given by the formula of R with Ak replaced by Ak, Then,
let R = R, + Ry + Rs. By Lemma 5, Ry + Ry + Ry = Ry + R + O, (| Ayl/log (n) /) and therefore,
LR* =7 (Ro + R)* + Of (vh).

Let F = (Wp @ U, Wy, (WI?;JF, WZ?;,)T ® (U,U?%), (W;’;+, W;’;,)T ® U3). F. is defined analogously and
let d; denote the dimension of . It can be shown that /iR := h,, (F), where F :=n~ /2" (F; — E[F]) and
hn is a cubic polynomial. BE.g., v/fw® AF = Z%TAZ;;/TQ (=123, (U; — E[U])), where &7 := S [ @' 0] ]T.

It can be shown that other terms on the right hand side of (S11) can also be written as linear functions
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of F. Similarly, it can be shown by tedious algebra that /nRy; and \/nR3 are homogenous quadratic
and cubic polynomials of F. A more lucid proof of this fact uses the observation that ¢, (1/9\,, | h) =
infg,supy,2 >, log (1+ A; Ui (62)). Let M; (6o,61) = Wp; @ (Y; —6pD; — 01). By rearranging the mo-
ment conditions, £, (3,, | h) = infg, 0,.0,5UPx, 1,23, 108 (1+ AT M; (B, 61) + AT (65)). Let Wi (6) =
(/\/li (0o, 61) ,U; (92)). 5,, and \ = (Xl, Xg) satisfy the first-order conditions wp*:

o

M (D0, 9) U (9,2) (Wi ® (Di 1)) Xy Gl
2 () () e ) )

The third condition implies that A; = 05 wp*. Therefore, £, (51) | h) =25, log (1 + AU (5,,,2)) and the
second and fourth conditions are ), U; (3,),2) / (1 + X;L_{z (@,’2)) =024, and ), G;'—Xg/ (1 + X;—Z/_{i (3,),2)) =
04, , which coincide with the first-order conditions of infg,sup,, >, log (14 AJU; (62)). Therefore, we have
4y (1% | h) = infg,sup,,2 ), log (1 + Aold; (92)). By expansion and Lemma 6, we get approximations for /):2,
@,’2 and £, (1% \ h) which are similar to (27) and (28). Then it is clear that by replacing sample averages
with sums of their centered versions and population counterparts we can get further approximations which
are polynomials in n=1/23", (F; — E [F]), where (F;, F) are defined by the formulae of (F;, F) with (U;, U)

replaced by (Ui, U ) Similarly, the stochastic expansion of ¢, (190, 51, | h) should involve only terms in F.

Let x; (V') denote the j-th cumulant of a random variable V. We follow arguments in the proof of Calonico
et al. (2022, Theorem S.1) and apply Skovgaard (1986, Theorem 3.4) with s = 4 to S, := B~'/2F where
B := Var [F] /h. For any t € R% with ||| = 1, by change of variables and calculation of the moments (see,
e.g., DiCiccio et al., 1988, Page 12), k3 (tTSn) =E [(tTSn)S} O (_ 1/2), K4 (tTSn) =E [(tTSn)4] —
3(E [(ﬂsn)ﬂ)z =0 (17") and oo (8) = max { |3 (¢750)] /3L /Tra (7 S)[ 741} = O (7 1/2), wniformly
in t. Condition I and II of Skovgaard (1986, Theorem 3.4) are satisfied by taking a,, (t) o< v/ and €, = 7~3/2.
Let Wy (t) == E [exp (itV)] denote the characteristic function of a random vector V, where i = /L.
Let Fy == (WpU, Wy, W2, (U, U2) , W3 .U3), s € {—,+}. Then, ¥r (t) = E [exp (it]F,) 1(X > 0)] +
E [exp (itj}"_) 1(X < 0)]7 where (t_,ty) denote corresponding coordinates of ¢. By change of variables,
E [exp (it{ F4) 1(X > 0)] = h(fx (0) E4 (t4) + O (h)) +Pr[X > h], where E, is the characteristic function
of Kpoy (V) (U, 1), Kpiy (V)? (U, U?), Kp+ (V) U3, where (V,U) has the joint density given by (v,u) —
1(0<v<1) fyx (u]0). A similar result holds for E [exp (it! F_) 1 (X < 0)] with E_ (t_) defined similarly.
Therefore, Ux (t) = 1—Pr[—h < X < hl+hfx (0) (Ey (t) + E_ (t_))+0 (h?). By Assumption 5, the vector-
valued functions (v,u) — (1, (le;Jr (v), Kp.t (U)2 it (v)3) ® (1,u,u2,u3)) are linearly independent. By
invoking the same arguments as in the proof of Calonico et al. (2022, Lemma S.9), Ve > 0, Je. > 0 such

that supjy . [E+ (t4)] <1 —cc. A similar result holds for E_. Then by these results, Ve > 0, 3¢, > 0 such
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that sup . Tr (t)‘ < 1 —cch, when n is sufficiently large. It follows from this result and arguments in the

proof of Calonico et al. (2022, Theorem S.1) that V§ > 0, Jes > 0 such that SUD|j¢||>6v/7

g (t)‘ < (1—csh)"

when n is sufficiently large. It is also easy to see that V§ > 0, (1 — csh)" < elr/2+2

, when n is sufficiently
large. Therefore, Condition III7 of Skovgaard (1986, Theorem 3.4 and Remark 3.5) is satisfied with o = 1.
Verification of Condition IV of Skovgaard (1986, Theorem 3.4) follows from essentially the same calculations
and arguments in the proof of Calonico et al. (2022, Theorem S.1). Now all conditions for Skovgaard (1986,
Theorem 3.4) are verified. It shows that S,, admits a valid Edgeworth expansion, i.e., conditions (3.1), (3.2)
and (3.3) of Skovgaard (1981) are satisfied with U,, = S,,, s = 4, Bs,, = "' and the Edgeworth expansion
holds uniformly over the class of all convex sets in R4 . Note that we can write /AR = hy, (Bl/ 2,S’n). Then
we apply Skovgaard (1981) to show that the Edgeworth expansion is preserved by smooth transformations.
Condition (3.4) of Skovgaard (1981) is satisfied with g, taken to be x + hy, (B!/?z) whose the gradient
at zero Vg, (0) is given by Vg, (0) = B/? (@TA;;/TQ, ng_Qdu)T + O (||Ay|l) by the chain rule. Then we
apply Skovgaard (1981, Theorem 3.2) to f, (Sy) := B 1gn (Sn), where B2 := Vg, (0)" Vg, (0). Then, B2 =
@TAZ;;/E (Var [U] /h) A;;/ffv—i-O (1Ax]]) = 1+0 (J|Aul|)- Condition I of Skovgaard (1981, Assumption 3.1)
is satisfied with p = 4. Condition II of Skovgaard (1981, Assumption 3.1) is satisfied with A\, = O (ﬁ_1/2) SO
that A2~1 = o (7'). Now all conditions for Skovgaard (1981, Theorem 3.2) are verified. It is left to compute

the approximate cumulants.

Then we calculate the formal cumulants of f,, (S,) = B, 'v#iR. In the calculations, we repeatedly use
formulae for moments of products of sample averages (e.g., DiCiccio et al., 1988, Page 12) and Lemma 1. By
definition, E [R;] = 0. We calculate E [Ry], let the remainder term absorb the terms that involve !, ..., 2%
and get E[Ry] = 2~ %1 + O (| Ay|| /n) where &y = o*M k) (7)) /6 — Qko)plom) (D ymibk - By formulae
for third moments and Lemma 1, E [R3] = O (R=2). Therefore, 1 (VAR) = &1, +0 (272 || Ay || h + n=3/?)
with & ,, == 7~ Y/?; . For the second cumulant, by definition, x5 (R) = E [R?] — (E [R])* and by formulae for
fifth and sixth moments and Lemma 1, E [R?] =E [R?] +2-E[R1Ro] +2-E[R1 R3]+ E [R3] + O (n®). By
Ry = Ryy + Ry and caleulation, B [R?] = E [R%l} 2. [Rgléu} 4o (ﬁfl ||Au||2), E[RiRs] +E[RiRs) =
E |:R11R2:| +E {RHR;;} + O (772 |Ayl]). Then by calculation, E {Rfl] =nt+0 <||Au||2/n) and 2 -
E [Rmén} = i g+ O <||Au||2 /n), where fiop . == @M o F /3 — 94lidotakqy(km) \[(m) g do-+a,
Then, B [R?] = a1 (1 + fig1 ) +O (ffl ||Au||2>. Calculation of 2-E {RHRQ} +2.E [RuRg} +E [R2] follows
from replication of calculations in Ma (2017) and we can directly use the results therein. By calculations in

Ma (2017), we have

8
2-E [RHRQ} +2-E {RHR;),} +E[R}] =n"? Z Roj +O (072 || Ayllh+77?%),
j=1
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for some bounded constants Ko1, ..., Rog, €.8., ko1 ‘= a”m”M(”o)M(ml)M(”k)aklo/i%fa”m dy+ap[(vo)\f(mn) qondytay
andotadotbypnm)gmdotadstb and the O (72 ||Ay|lh+n~3) remainder collects terms that depend on
al, ..., a?® and higher-order terms from the fourth moment calculation. The expressions of Rag, ..., Reg are also
easily obtained from Ma (2017) and hence omitted. Therefore, k3 (vVAR) = Rgn+0 (||A1,{||2 + 07| Aull + 7‘f2),
where o = 1+ Rt + Fag and figa = 171 (X5 oy — 7). By definition, s (R) = B [RY] - 3.
[R|E [R?] +2(E[R])? and by E[R] = E[Ry] + O (a2), E[Rs] = O ('), E [R?] = E[R?] + O (7~2) and
[R?] =E [R}] +3-E [R2R}] + 0O (7n~?), which follows from formulae for higher moments, we have r3 (R) =
R3] =3 (E [Ra R3] — E[R:] B[R2]) +0 (2?). Tt is easy to check that B[R] = E [%,] +0 (72 | Aull),
[RyR2] =E [RQR } O (72 || Ayll). By these results and E [R?] = E [R%l} +0 (i | Ayll), 53 (R) =
{RH} -3 (E [RQR%} —E[Ry)E {R%D +0 (773 + 12| Ayl|). Calculation and expansion of E [R:fl} -
(E [Rg]%%l] —E[R:|E [R%ID follows from replication of calculations in Ma (2017). For example, by cal-

culation using formulae for moments (DiCiccio et al., 1988),
- 3 3
E |:R£131i| _ n—2 (E |:(h—1w(k‘)v(k) _ w(k)ak‘) :|) — n_2E {(h—lw(k)v(k)) :| + 0] (ﬁ—Q ||AZ/{H h) ;

and the O (772 | Ay|| h) remainder collects all terms in the expansion of the third moment which depend
on o', ...,a?%. Note that we can write E [hil (w(k)])(k))g} = wRWwgMakm in coordinate notations.
Similarly, we calculate E [RQR%1:| —E[R2]E {R%l} . We note that coefficients of terms of order n=2 in E [Rifl} —
3 (E |:R2R%1:| —E[R:]E [R%D are formally the same as those of the leading terms in the calculation of the
formal third cumulant in Ma (2017). Calculations in Ma (2017) show that the sum of these coefficients
are exactly zero and therefore, the leading term vanishes so that r3 (vVaR) = O (||Ay| /vA +7~%/2). By
this result, the fact that x4 (R) = E[R*] — 3(E [RQ])Q —4-E[R]r3(R) + 2(E[R)*, E[R] = O (n1),

R = Rn + égl + Ry 4+ R3 and standard calculations,

ra(R) =B [RY] =3 (B[R*])" +0 (n° | au] +77") = {E LRI [R%DQ}
4 {E [RQR%] —-3-E [Rzéu} [Rn} } +6 { [RQR } E (R3] E {Rfl}}

4 {E [Rzzizil} - [ ] E [R%l] } +0 (73| Ayll +77Y) . (S12)

And by standard calculations,

B[R] -3 (E {R%DQ —n3 (E {(h_lw(k)v(k) = w““)a’“)j 3 (E [(h—1w<k)v<k‘> - w(’f)ak)Q] ) 2)
— 3 (E [(h—lw““)v(’“))j ~3 (E {(h—lw“)V(k))QD) +0 (7 | Ayl h) |
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L ..., a2%  Similarly, we also calculate

and the O (772 [|Ay|| k) remainder collects all terms that depend on «
E [RQRH _3.E [321%11} E [R%l}, E [R%R%l} ~E[RYE [R%l} and E [RQR‘%J _3.E [RQRM] E [R%l] on
the right hand side of the second equality in (S12), ignore small-order terms that depend on a!,..., a2
and take the sum of the leading terms. We do not need to rework on the calculations since they are for-
mally the same as those done in Ma (2017). Calculations in Ma (2017) show that the sum of the leading
terms on the right hand side of (S12) is exactly zero so that it follows from this result and (S12) that
ks (VAR) = O (7! || Ayl + 7~2). By previous calculations and B,, = 1+ O (||Ay||), we get the approxi-
mate cumulants for f,, (S,): k1 (fn (Sn)) = By tfin + O (Y2 | Ayl h +77%/2), ko (fn (Sn)) = By 2Ra,n +

O (18ull® + 77 | Aull +7172), 55 (fa (S)) = O (I8l [V +1?) and s (f (Sa)) = O (27" [[Aue]| +272).

Let ¢ (- | p, 0?) denote the PDF of N (u,0?). By applying Skovgaard (1981, Theorem 3.2) to f, (Sn) =

B, ViR,

Pr {n (Ro+ R)® < x} - 6 (t| By R n, By o) di+0 (||AuH Vi + ﬁ_3/2> , (S13)

/|t+(\/ﬁRo)/Bn

<Vz/Bn
uniformly in 2 > 0. By using the recurrence properties of non-central 2 (Cohen, 1988) and mean value
expansion, we have OF (z | A) /OA|,_x = —zf2 (2) + O (X). By this result, B2 = 1+ O (|[Ay]|), change of
variables and mean value expansion,

6 (t| By Ry, By o) dt = / P (t | (\/ﬁRo + Fn,n) N 1) dt

/2+(¢%R0LULJSVE/Bn [tI<v/2/R2n
2
iRy + Fim N T
_F (m | M) = Fys (v) — afys (4) ((\/ﬁRw i) ot mn> O (). (S14)

R2.n R2.n

By (S13) and (S14),
Pr [n (Ro+ R)? < x} — F (2) =€ (n,h)afy2 () + O (V) , (S15)

where %ifre (n,h) = ﬁR%O + Qﬁélokl,n + Ro1p + 07t 2?21 Roj. By tedious and lengthy algebra, we
, = 8 4 —h

can directly show that Rf, = 2} — %} and D=1 R = 2 (7/1:[]- - A//;j) + O (h) and 2v/ARi0R1 ., +

Ro1n = O (h||Ayll). By calculating E[LR*] with arguments used repeatedly in previous proofs, we find

that ‘éfre (n,h) is just the leading term in the expansion E[LR*] — 1 = %;ﬁ”e (n,h) + o (v5), where v =

Ayl + 7 || Ay||* + 2. We use the fact that £, (51, | h) = infg,sup,,2 >, log (1 + AJ U; (62)) and an alter-

native expression for LR* = n (Z* — Z*) to get a more lucid proof.
B B T
We consider the singular value decomposition of A~ /2 (—Ag) such that STA M2 (—Ag) T = [ A 04, xd, ]

auT auT
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where STS = Iy, T'T = I;. and A is a d.-dimensional diagonal matrix. We apply the rotation by
Vi (62) = TU; (65) where T = STAéé/TZ so that ¢, (1/9;, \ h) = infg,sup,,2>";log (1 + A V; (62)) and calcu-
lations from Matsushita and Otsu (2013) can be applied. Also denote V, =TU;, H; =T (fg]) (]7 and H

defined similarly) and € = (/&TT)A. Then it follows that Apyr = Iog, x24. and

-1 Od.xd. Oa.xa. QT _ _ _ _
—Apyr Ay -(fM)7ert —(07)7'N
. = | Od,xa, —la, Oa,xa, | = S _ . (S16)
N ’ - _NTT 0
QO Ouxa Q07

Let (A?;,Azb,A;bC,C';’S,C’;;b’S), (a%,a%b,aibc,azbc‘i) and ('y;’s,fy;;b’s,fy;’S;b’t,'y;;b;c’s) be defined by the same
formulae as those of (Ak’Akl’Aklm’Ck,n7ck;l,n)’ (O(k,OZkI,O(klm,Oéklmn) and (,yk,n7,yk;l,n’,Yk,n;l,o’,ykql;m,n), with
V. H, Vi, H;) replaced by (V,H,V;,H;). The leading terms in the stochastic expansion of n=1¢, (9, | h
p \Vp
is given by n~10* = Rf{*“}?gf” + 21??{”1??5” + 2}??{“}??5“ + ng“]?‘fgﬂ, where the expressions of
Rt Rd=ta pdata)) are readily obtained in a special case of Matsushita and Otsu (2013) when the moment
11 12 13

conditions are linear in parameters. E.g., R?f*“ = A?z+“,

~ 1 1 _ _ .
dota _ _ L gdotb gdotado+b | L dovaditbd4e qdo4b qdite _ (st) datass gt G(st) . detasdatbis gd.4b gt
R = 2Ai Aj + 0% ATUAY Qv ey A + QY ATV AL

and the expression of R%"‘a is omitted for brevity (see Matsushita and Otsu, 2013, A.1). Let A; = A} —of.
We again replace A3 by Az + af to obtain R‘;{*‘a = Rfﬁ"a + R?fg'a, Rf;"’a = R?g;a + R_f:;fa + Rfﬁ;a
and ]%gg"‘a = ﬁi_f:g;a + R?g;a + Eggfa + R;igara. Then by standard calculations, E [ﬁ’lg*] is equal to
the sum of Rf5i“RES", RGSE (R | B | RGTRES | B [RGTRf| and 2B R RY5e +2-
E [Rgff' “R‘fg; “} + B [Rgg; “R‘f;; “} with an o (UEL) remainder term. By inverting using the second equality
of (S16), R?f;aﬁ‘;f;“ — a‘;f"“afﬁa = Q@P)T2Yb, By calculation and Appr = Iag. x24., B [Rfff‘aégfra] =
ntd, + O (||A1,,||2 /n) It is easy to calculate that E [R‘ii;;“} = fﬁ’lagﬁa detbdatb /6 _ Q(St)'y?dz+a’s +

O (Al /n). Then by (S16),
~ ~ 1_- _ _ _ - _ _
RgfaLaE |:Rg§;ra:| _ —ﬁ_l <6Tach(ab)Q(Cd)Td + Fa,b,sN(as)Q(bc)Tc> +o (Ui/ﬁ) )

By calculation and using (S16), E [R‘;ffaR‘;;ra] = n~1YPeQE) QY /6 + o (vf/n). By calculation in
Matsushita and Otsu (2013, A.4),

8
2B [RGTRG| 2B [RETRET| 4 B[R RE ] =272 Rpay + 0 (v /7))
j=1

S12



where the constants are defined by

1. ~ ~ 1 obe s ~ ~ -
(RT217 Rt22, R123, Ri24, Ri25, Ri26, Ri27, Ri28) = (2'I‘abch(ab)Q(cd)7 —gTach(ad)Q(be)Q(Cf)Tdef,
2]_i\a;b;<:,31§I(as)Q(bc)7 _fwa;b,sQ(ac)Q(bd)N(es)Tcde’ _f\a,s;b,tQ(ab)o(st)

f\a;c,sQ(ab)Q(cd)o(st)f\b;d,t’ _I_wa;c,sN(at)Q(cd)N(bs)f\b;d,t, fwa;c,sN(as)Q(cd)N(bt)f\b;d,t) )

Note that (RT21; Ki22, K23, R125> = (7/;,1, 7/;’2, 7/;3, A//piA> Therefore,

8
E [ﬁ?*} =d, + n%t — TP NEIQEITe 4 7~ Z Fia; + 0 (V).

j=1

(Ryo1, Ria2, Rio3, Ros) = (7/,;[17 7/1;[2, ”//pT,g, "//pTA). By following the same steps, we get a similar expansion for

E {ﬁz*] And, then we have E [ﬁ (Z* - Z*)} -1= ‘525"6 (n,h) + o (vh)

8
(g;re (n’ h) -5 (%IJE o (@;ﬁ) - Fjlf;l,uNgrku)Qgrlm)Tm + fa;b,sN(as)Q(bc)Tc + ﬁfl Z (RTQj _ RIQj) .

j=1

It is easy to see that by Lemma 1, F?I’u = T3 = O (h). Therefore, Ffl’“N?m)Q?m)Tm = T2bsN(as) Qb Ye —
O (HAU” h), Kio4a X Kioqg = O (h) and Kioe X Kior X Kyag X Rige = Kior X Kiog = 0] (h2). It follows from

these results that (f;?re (n,h) =€ (n,h) + O (| Ayl h +n71).

It is easily seen that the result (S13) with the weak inequality replaced by a strict inequality still holds
(see Skovgaard, 1981, Theorem 3.2). By LR* = i (Ry + R)* + O3 (v}) and the fact (21),

Pr[LR* < ] — Pr [ii(Ro + R)* < x} ‘ <Pr Hﬁ (Ro + R)? — x’ < cwg} Y <log (n) /n3/2) —0(vh),
(S17)
where the equality follows from (S13) and boundedness of ¢ (- | K1,n, R2.n). The conclusion follows from (S15),

(S17) and P (n, h) = € (n,h) + O (|| Ay h +n7L). |

References

Bickel, P. J. and K. A. Doksum (2015). Mathematical statistics: basic ideas and selected topics, Volume 2.

CRC Press.

Calonico, S., M. D. Cattaneo, and M. H. Farrell (2022). Coverage error optimal confidence intervals for local

S13



polynomial regression. Bernoulli.

Chen, X. and K. Kato (2020). Jackknife multiplier bootstrap: finite sample approximations to the u-process

supremum with applications. Probability Theory and Related Fields 176(3-4), 1-67.

Chernozhukov, V., D. Chetverikov, and K. Kato (2014). Gaussian approximation of suprema of empirical

processes. Annals of Statistics 42(4), 1564-1597.

Cohen, J. D. (1988). Noncentral chi-square: Some observations on recurrence. The American Statisti-

cian 42(2), 120-122.

DiCiccio, T., P. Hall, and J. Romano (1988). Bartlett adjustments for empirical likelihood. Technical report

No. 298, Department of Statistics, Stanford University.

Ging¢, E. and R. Nickl (2015). Mathematical foundations of infinite-dimensional statistical models, Volume 40.

Cambridge University Press.

Kosorok, M. R. (2007). Introduction to empirical processes and semiparametric inference. Springer Science

& Business Media.

Ma, J. (2017). Second-order refinement of empirical likelihood ratio tests of nonlinear restrictions. The

Econometrics Journal 20(1), 139-148.

Matsushita, Y. and T. Otsu (2013). Second-order refinement of empirical likelihood for testing overidentifying

restrictions. Econometric Theory 29(02), 324-353.

Skovgaard, I. M. (1981). Transformation of an edgeworth expansion by a sequence of smooth functions.

Scandinavian Journal of Statistics, 207-217.

Skovgaard, I. M. (1986). On multivariate edgeworth expansions. International Statistical Review/Revue

Internationale de Statistique, 169-186.

S14



