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S9 Generalized balancing and regression adjustment S73

S1@Covariate-adjusted inference on the treatment effect derivative S74

S1 Proof of Theorem 1

max; is understood as maxi<;<,. For a square matrix A, ||A| is understood as the spectral norm of A.
“With probability approaching one” is abbreviated as “wpal”. “Law of iterated expectations” is abbreviated
as “LIE”. “a < b” is understood as a < C - b, for some universal constant C' > 0 that does not depend on the

distribution of the variables or the sample size but may depend on the kernel function.

S1.1 Proof of Part 1

Denote
I,y = E Hr,, <)h(> ry (if) K <)}f) 1(X > 0)]
I, = E Hrp (f) ry ()}f) K (f) 1(X < 0)]
and

= (X e (X

Wy = epall iy <h> K (h> 1(X; > 0)
= _ X X

Wy—i = ey 10 r, (h) K (h) 1(X; <0)

Wpi = Wpi— Wpi—i.
We can easily show
ﬁp,s —ps = Op ((”h)_1/2>
II,s = ¢ Vs +0(h), (S1)

where the first equality follows from Chebyshev’s inequality, change of variables, Taylor expansion and con-
tinuity of fx, and the second equality follows from change of variables and continuity of fx. It follows that
Vs € {—,+},

Imineig (I s) — mineig (¢ - Vpis)| < [T s — ¢ - Vpsl| = 0 (1) (52)
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and

~

mineig (Hp,s) — mineig (I, 5)

< HHP,S - Hp,s

=o0,(1).

Then, if follows from this result, the equality
A'-B!'=-B'A-B)B'+B ' (A-B)A'(A-B)B!
for positive definite matrices A and B, and mineig (V,.s) > 0 that Vs € {—, +}

|

|
Q
—
=

71 -1
HHP,S -1

p,s

= 0, ((nh)*“) .

(S5)

Lemma 1. Let V denote a random variable and {V1,...,V,} are i.i.d. copies of V. Assume that nh —

00. Suppose that K is a symmetric continuous PDF supported on [—1,1]. Let B C [z,T] denote an open

neighborhood of 0. The following results hold for all (s, k) € {—,4+} x N: (a) if gv is uniformly continuous

on B\ {0},
\ {0} . T
E EWP;SV = g +o(1);

(b) if gv is (p + 1)-times continuously differentiable with uniformly continuous gé’fﬂ) on B\ {0},

(p+1)
1 17 MV,S
— Z Whis,igv (Xi) = pvs + b+ 1)!w5§1’1hp+1 + 0, (RPT1);

(c) if gv= is bounded on B\ {0},
1 — 1, 19\
nh 2: P;s,iVi -E |:h[ p;sV:| =0p ((’I’Lh) ) )

(d) if gjv |- is bounded on B\ {0} for some r > 2, max; Wp;sﬁﬂ/;

=0, ((nh)l/r> .

Proof of Lemma 1. We take s = 4+ without loss of generality. For Part (a), we have

]‘Nk
E |:th,+‘/:| -

- /OH (ez—;l,lH;jrrp (y))k K* () gv (hy) fx (hy) dy

S3

% (6;1,11_[;,17"? (%))kKk (%) gv (z) fx (z)dx



Ska
= B o)
0

where the first equality follows from LIE, the third equality follows from change of variables, and the fourth

equality follows from (S5), continuity of gy and fx and applying the equality
a" —bF =(a—b)(a" T +a" P+ a2 40 (S6)

to (e;l,lﬂgjﬂ"v <x/h))k - (e;+1,1 (‘P—l 'sz;1+) Tp (m/h))k

By Taylor’s theorem, for X; > 0,

(2) (p) (p+1) (x)
Hvy Kyt 9v i L
Xi) = e XZ+-- XP 4 — L xpt
gv (Xi) = pv4 + py ', Xi + | K o P+ TSR

for some X; between 0 and X;. Denote g = (MV+7MV+7MV+/2 7/1V+/p) Then, we write
1 | i ( )
s > Wopigy (Xi) = o > Wi (r) (X; o Z XL (S7)

Clearly, by the definition of WP;JF,Z-,

1 — 1 ~ X; X; X;
o > Woeri(ry (Xi)py) = = > el iy (};) K <hz> 1(X;>0)r, (hz) Hpy
= e;+1,1HN+
= Hvit. (S8)
Write
(p+1) (p+1) (v _ , (p+1) (p+1)
Z gV (X> P Z ( (Xz) Hv+ ) xPH Z “VI')+ Xt
nh P+ A\ +1) z nh P+t (p+1)' ’L h I)7+1 )' i

(59)

By change of variables and continuity of fx,

(e -
- [l G

S[ps

NG () o=

(%)pﬂ ‘K (%) \ fx (@)dz=0(1).
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Then, by Markov’s inequality,

1
i 2

(B

K <Xh> ’ 1(X;>0)=0,(1). (S10)

By this result and (S5),

,\ X\ 7
Weri [ S
i+, < h >

IN

1

) () Gl G

= 0,(1). (S11)

By this result, |K (X;/h)| < 1(]X;| < h) and continuity of g(p+1) we have

(p+1) (¥ (p+1)
nhZ Pv+z(g 5;(+)1>'Nv+ >Xf+1

< (nhz

It now follows from this result, (S7), (S8) and (S9) that

X /h>P+1

2 S A A p+1)

) : ( sup ‘g P (z) — u%”’) WP = o, (hPH1).

0<z<h

(p+1)

1 = Ky,
oh > Wotigy (Xi) = pvs + — s Z ri ++1) X 4o, (WPT1). (512)

By triangle inequality, (S5) and (S10),

p+1

1 _ Xi p+1 1 ~ Xz ~ X’L p+1
% ZWP;+,i (h) - % ZWpHr,i (h) Z ( P+, T p,+ z) (h)

< I - ) )\HK(M()

y (S5), Chebyshev’s inequality, change of variables and continuity of fx,

1~ X p+1
Wt (1)
h h

1 __ X p+1
— o= —E
nh ZZ: Wpa+:7f ( h )

=0, ((nh) ™).
By (S5), change of variables and continuity of fx,

0 ()] < [ e () () ) e

E
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= Wi +o(1).
It now follows from these results that
(p+1) p+1 (p+1)
1 = Hy 4+ +1 1 17 X; Hv 4+ 1
— Wt s : XP = — Weoril — : hPT
nh zﬁ: it (p+ 1)‘ i nh ZZ: i+, h (p+ 1)'
’u(p+1)
_ Vi+ p+1,17 p+1 p+1
- (p + 1)!wp;+ h +0p (h ) :

Part (b) follows from this result and (S12).

For Part (c), write
LSowr, vow |2 v] = 2 wk Wk, )V L TR A ol 7
nh Z it VT Pt T nh Z ( Pt p;+,i) i T nh Z Pyt Yt T Pt :

~ k
Then, by triangle inequality, applying (S6) to (e;_ml_[;,i_rp (Xz/h)) — (e;_LlH;,i_rp (Xi/h))k7 LIE, change

of variables, boundedness of gy, Markov’s inequality, and using (S5), we have
gv| g

S (Wl - W)

< % 2; ‘Wz’f+z - Waf;m Vil = Op (("h)71/2> ‘

It follows from (S5), LIE, change of variables, Chebyshev’s inequality and boundedness of gy2 that
1

L s [ o (o)

Part (c) follows from these results.

For Part (d),

_
s Ty

< (max ‘Wp;-s-,ivi
1

1/r 1/r
r 1/7 ~ r 1 —~ r .
) < (Z\WWW ) = (mZ!Wp;m ) (nh)/". (513)

By LIE, change of variables, Markov’s inequality and boundedness of gy,

(3

By this result, triangle inequality and (S5),

k()10 mr-0,0),

1
i 2

T IS
Vil

1 — r 1 —
nhzj:‘W;HVi < nhZi:‘W;J“i
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~ rf 1 XA\ I|" X
o 1 i i ) T
= HHp,+ <nhzz: Tp (h) K (h> 1(X; >0)|Vi >
= 0,(1). (S14)
The conclusion follows from this result and (S13). [

Let A be a random variable/vector/matrix. {Aj,...,A,} are ii.d. copies of A. Denote KAJC =
B[n 1WAl Bay = ()™, Wh A Ay = B [0 W], By = (ah) T S, WE By = E (R4
and U, == (nh) "' Do /V[Z,,iAi. Also denote W4y = (nh) "3, W,’fﬁAi, Uy, = (nh)"" Y, W;fl and U, =
(nh)_l Zl /V‘[?p,iAi-

Lemma 2. Suppose that Assumptions in the statement of Theorem 1 hold. Then, )\;b =0, ((nh)fl/Q) and
X =A% 0, +0, () ).

Proof. Since )\Zb is defined to be the optimizer of a convex optimization problem:
)\;b = argi\naxz log (1 + AT (WNZ)) ,

therefore, we have the first-order conditions:

Z W,iZi 0
——~ — Va1
T (0 (W,.2)
Then, by
A (W, Z:
iAzl—()Ei’) (815)
1+ (Ash) (Wp,iZz) 1+ (M) (szi)
and the first-order conditions, we have
1 <~ - 1 W22, 7]
— N W,iZi= | — Gl AP (S16)
i 2 ”hEH(A;bV(WmZi) '
and e )
1 Py _ 1 WZ'(Z_T/\eb)
— N W, (Z 2P = — pLi P . (S17)
nh; B nhzizlJf()‘Zb)T (Wp’iz)

Note that for all 4,

0< 14+ (\2) " (WpaZi) <1t max ()" (WaZ) <14 2] max |12

)
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where the first inequality follows from construction of /\;b. Then, by this result and (S17),

(ZT)\eb)
1+ ( )\eb (W,,,Z-Zi)

Wz (ZT)\eb)2
L |22 | max |7,

H)\ebH H\I’ZH = 7ZW’ ZT)\eb nh Z - nh Z

pZ

Then by rearranging, we have

Pyt

() Tz ox < [l | {1+ e max |,

dh

and

()" Bz oA < NI ||| {1+ ([ e |7,

}JFH)‘ebH H‘I’zzw 32212“-

pZ

Then it is clear that

Pyl

o wineie (5.0) < I8 {1+ 12 e

_i } + H/\;e)bHQ H‘T’ZZT,z - zZZT,2H

and by rearranging,

WoiZil| = W2z 2 = Bz o)) N2 < |92 (s19)

(mineig (8227,2) - H(I}ZH max

Note that by Lemma 1(a), 5227’2 = (w9?/¢) pzz7 + +o0(1) and under our assumptions, 7z . is positive
definite. Then we have mineig (&ZZT’Q) = mineig ((w)?/¢) pzzv +)+o(1) and mineig ((wh? /) pzzr 4) >
0. Therefore, mineig (5227’2) is bounded away from zero when n is sufficiently large. We have v z =

o NT
(0, \Il;> and by Lemma 1(b),

~ 1 — 1 =
Yz = & zz: Wh.igz (Xi) + — XZ: Wy.i (Zi = 92 (X3))
(p+1), p+1,1 (p+1), p+1.1
1 = (“ZJr Wpit T Hz, - "Wp— )
= — i(Zi — Xi ’ hP 1 hPTLY 1
nhZ:Wp’ ( 9z (Xi) + (+ 1) +0p (R7) (S19)
By Lemma 1(c), (nh) ™" Do Wpyi (Z; — 97 (Xi)) = Oy ((nh)fl/z) Then it follows that H(I\/ZH = ((nh)fl/Q)
By Lemma 1(d) ‘\leHmaXi Ap,i Z; (1). By Lemma 1(c ’\Ilzz"r 5 — Ayt 2” = 0Oy ((nh) 1/2)

Therefore, we have the coefficient of ||)\§b|| in the parentheses on the left hand side of (S18) is bounded away

from zero wpal. This result, U *H =0, ((nh)_l/z) and (S18) implies that H)\;bH =0, ((nh)_l/Q) .
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Now (S15) and (S16) imply that

and
PR W2,Z; (ZT ) (xeb (W,.2Z;
By= Ty P L i p)(i<p )) (S20)
2% T op T
- 1+ (A) (Wpyizi
By arguments similar to those used to prove (S11), (nh) ™" i Zi - O, (1). Therefore, by this result,
H)\;bH =0, ((nh)fl/z) and Lemma 1(d),
— bl|2
1 W2 (ZT)\eb ( ) (W,.2)) < (m b ) 1251
i 2 08 (T2 S g [
= 0, ((nh)fl) . (S21)
The second conclusion follows from this result, (S20), - 322772 ’ =0, ((nh)71/2> and ||)\;b|| =
0, ((nh)_1/2>. n

Proof of Theorem 1 Part 1. Denote 19§P = wEbW +Y;/h and 9 = Do webW iD;/h for notational

simplicity. By using

we have

Jeb
vy

“hz E/W iZ:)

((}\eb)T /Wpﬂ,ZL) ) 2
1

- %ZWM;@ 1= 0" (W.2:) + .
7

(77:) (03] (wp,izi)f

1+ (Aeb) " (

—~
>/
&
=
~—~
3
X
N—

= Uy - YZ 2)‘eb + o Z (522)

5
X
N—
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By Lemma 1(c), \/I}YZ,Q - EYZ,Q =0, ((nh)_l/Q). By arguments similar to those used in the proof of (S21),

(WP’ ) (09" (W,
nh zl: )\eb)T <Wp

Wp,iZi
iZi)

)>2 =0, () ™).

By these results, we have 1/9\‘29 = Uy — A;Z QA;b + O, (( h)~ 1). And similarly, 1/9\%’ =Ty — AEZ 2A§b
Op ((nh)_l) By these results and Lemma 1(b,c), ﬂ%’—ppj =0, ((nh)_1/2> and 1/9\§P—uy,]u =0, ((nh) 1/2).

By these results and simple algebra, we have

U vy (99w ), Y (mpi
v$  BD KD KD ppg  \ 98
T e T b _
Uy - YZ Ay —hvy Y ( ADZ 27 MD’T) 1
_ _ +0, ((nh) )
KDt KDt
Uy — AT P
= MZ27P 1 0, ((nh)*l) . (S23)
1D

By writing 322772 as a block matrix and inverting,

. A;Y o] el RooBra) [ :
AE%T,Q — 2 d, + Ao AZZTQ - Z,2~ ZT .2 |: _A{,z Idz :l . (824)
Oa.  Oda,xd. La, Az 2
Then, by Lemma 2, we have
T eb A—1 0 1
Ayza Ay = | Bua A 8755 ] - | +0 (WL) )
Uz
= ¥z + 0, ((m)) (525)

where

~ o~ -1 ~ ~
_ ~ Az oAy ~ JANY YA
™M = (AZZT,Q - ZQ&“> <AMZ,2 — 7N[§2 Z’2> .

By Lemma 1(a), AZZTQ = (WS’Q/QO) pzzT + +o(1), 82,2 =2 (%9’2/90) pz +o(1), 32 =2 (WS’Q/QO) +o(1),
EMZQ =2 (w)?/¢) prrz,++o(1) and AM,Q =2 (w)?/¢) par + 0 (1). Therefore, it follows from these results,
(S4) and the fact that for s € {—, +}, pzz7 s — pzpz7 is positive definite that Ya; = yar + 0(1). Therefore,
by this result, ¥, = O, ((nh)_1/2), (S23) and (S25), we have 5§b—19 = {I\JE/MD,T+OP ((nh)_1/2). By lemma

S10



~ 1 -
v, = %pr,ige( prz € — e z))
(p+1) p+1,1 (p+1) p+1,1
B ('u’€,+ Wpit T He— "Wpi— ) Pt ol
= (p—|—1)! h hZWpl € — 4 ))+O(h )

Then, we write

1 —~ —
h 2; (Wp,i - Wp,i) (€i — ge (X))
~_ _ 1 X; X
= el (T - 11, (nh S (5)x (5) 1> 06 - <X4>>) .
By change of variables and Chebyshev’s inequality,

TN (5) 5 (3) 106> 00 - e 0y = 0, (o).

Therefore, by this result and (S5), (nh)~" > (WW- — Wp,i) (6 —9c(Xi)) = Op ((nh)ﬂ). It then follows

that
(M@rl) A (p+1)wp+1,1> )
~ et “p e~ “pi— N el 4 —1/2
W= o B o S W o= g (X0) oy (n0)2). - (20)
By Lemma 1(a),
1~
\/—Zsz € — Je (Xz))‘| = E |:th (efge (X))2:|
0,2,.2
- 27 0. (S27)
P
Let ¢ € (0,1). We have
1 — e 2+¢
;E ‘mwp,i (El - ge (XZ)) ] = 1+§/2 Z |:‘ % gF (X))’ :|

(1 + o <X>|”<)}

B [hl g
<
(nh)g/2

)

where the inequality follows from Loéve’s ¢, inequality. By (S5), change of variables and Markov’s inequal-

S11



ity, E {h_l

Lyapunov’s condition

+< 2te = 2+4+¢ 2te .
» & = 0O(1) and E |h ‘Wp lge (X)] = O (1). Therefore, we have verified

1 — 2+¢
E||l—W,,; (e — ge (X; — 0.
; ’ m p, ( g ( ))
By Lyapunov’s central limit theorem,
S 3 Wi (6 — ge (X))
v 4 N(0,1).
\/ [fZ i (€ — ge (Xi)):|
It follows from this result, (S26) and (S27) that
(M(pil)wptrl 1 (le)wptlxl) w0252
Vnh | O, - & =P et 5N 0,22 . (S28)
(p+1)! @
The conclusion follows from this result, 5?}’ —9=U/pupi +o0p ((nh)_l/ 2) and Slutsky’s lemma. |

S1.2 Proof of Part 2

The following lemma is an analogue of Lemma 1.

Lemma 3. Let V denote a random variable and {V1,...,V,,} are i.i.d. copies of V. Assume that nh — co.
Suppose that K is a symmetric continuous PDF supported on [—1,1]. Let B denote a neighborhood of 0. The

following results hold for all (s, k) € {—,+} x N. (a) If my is uniformly continuous on B\ {0}, for k > 2,
B[ LWE V| = gyl 1 0(1);
Bopst T V,sWp otl)s

(b) If my is (p+ 1)-times continuously differentiable with uniformly continuous mg)ﬂ) on B\ {0},

(p+1)

1 s
E [hwp.ﬁv] = v+ (ij’L 1)|wg§1 ARPE o (P

(¢) If gy2 is bounded on B\ {0},
1 k Lok vl — 1/2
S WhVi— B {hwp;sv} =0y (k)™

(d) If gjv| is bounded on B\ {0}, max; Wy :Vi| = O, ((nh)l/r).

S12



Proof of Lemma 3. We take s = + without loss of generality. By LIE, change of variables and continuity

of gv and fx,

Lk vl = [T iee (®
E{hWP;JrV] = /OhICp;_s_(h)mV(:c)dx

Kk (y) my (hy) dy

=8|

= Yyqwyt +o(1). (S29)

Part (a) follows from the above calculation.

Part (b) is a straightforward extension of Bickel and Doksum (2015, Proposition 11.3.1), which follows

-
from LIE and (p+ 1)-th order Taylor expansion. Denote ¢, = (¢V7+,w$/{i,w§/?jl/2,...,wgl_/po . By

Taylor’s theorem,

E ULWpﬁV} = /Oﬁ Kyt (y) my (hy) dy
z z (D)
= | Ko (y) (v Hry (y)) dy + /0 Kpit () (M) (hy)"* ' dy,  (S30)

where 0 < ¢ < hy denotes the mean value. By the definition of K.+, when h is sufficiently small, we have

=8l

/0 Kpt (y) (W {Hry (y)) dy = eppq 1 Hioy = gy 4. (S31)

By continuity of gy and fx,

z (p+1)( (p+1), p+1,1
h m {) 1/JV w 4
K, VT ) (hy)P T dy = L TR gl (Rt

Part (b) follows from this result and (S30).

By LIE and change of variables,

1 1 1 1 2 _
Var {hwgw} =5 {E {hwjﬁvﬂ —h (E {hW,’;JD } =0 (h )
Part (c) follows from this result and Chebyshev’s inequality.

For Part (d), by arguments similar to those used to prove (S13)

1/r
1 r 1/7‘
ma [ W, Vi| < (mgjwp;+,ivi| ) (nh)!'". (s32)

S13



By LIE, change of variables, Markov’s inequality and boundedness of gy, (nh)f1 > Wt iVi|" = 0, (1).

The conclusion follows from this result and (S32). [

Let A be a random variable/vector/matrix. {Aj,...,A,} are i.i.d. copies of A. Denote Ay =
E[h'WEA], Way = (nh)' S, WE A, Ay = E[R7 W], O = (nh) ' 32, W,
U4 = (nh)"' S, W,iA; and U == (nh) " 32, W,

Ay = E[ 71WPA],

pw

Lemma 4. Suppose that Assumptions in the statement of Theorem 1 hold. Then, A7 = O, ((nh)71/2> and

N = A5,z + 0, () ).
Proof of Lemma 4. By arguments similar to those used in the proof of Lemma 2,
(A7) " Az oAme < A 120 {1+ A max [ Wy Zl |} + N9 (102272 = Azzr o] (839)
and
(mineig (Azzm ) = 10l max|[Wyi Zi]| = [®2z7 2 = Azzm o) A2 < 119211 (834)

Write U5 = U7 — Ay + Az, It follows from Lemma 3(c) that U7 — Az is O, ((nh)_l/Q). By Lemma
3(b), Az = O (hP*!). Therefore, ¥; = O, ((nh)_l/2>. It also follows from this result, Lemma 3(d) that
IR (maxi HWWZZ»H) = 0, (1). By Lemma 3(c),

- AZZT,2H =0, ((nh)71/2). Since it follows

from Lemma 3(a) that Azzr » = V777 w)?+0 (1), we have mineig (Azz7 5) = mineig (V777 Lwd?)4o0(1).

Therefore wpal,
o = 1 . 0.2
mineig (Azz7 o) — [V 2] max \WpiZi|| = | z27 0 — Azzr o > 5 - mineig (Yzz7 cwp?) >0.  (S35)

By this result and (S34), A7 = O, ((nh)‘lﬂ)_

By arguments similar to those used to show (S20), we have

RN AP ((w) (WiZs) )

Uy, =Ugpr QA — — — . (S36)

270p nh - 1+ ()\pmc) ( i Z)
By Lemma 3(a) and Markov’s inequality, (nh)~ Z ||Wp iZ; || = Op (1). Then by using this result, Lemma
3(d) and AJ¢ = O, ((nh)_1/2>, the second term on the right hand side of (S36) is O, ((nh)_l) The
second conclusion follows from this result, |[¥zz7 5 — Azz7 | = ((nh) 1/2> A= 0p ((nh)_l/g) and
(S36). |

Proof of Theorem 1 Part 2. Denote {9}"}6 =, wrW,;Y;/h and @Ec =, wrW, ;D;/h for notational

S14



simplicity. By writing Az 77 5 as a block matrix and inverting,

A_l OT _2zTo2 AsoA -1
A}lz—rz = 2 d. —+ Ao (Azz‘r72 — Z,QA ZT72> l: _AAzz,z Idz :l . (837)
Oa.  Oda.xa. Ly, ?

Let

_ Az2AgT 2>1 ( AM2A22>
=(A — = 2 2 A —
YMm < ZZT 2 A, MZ,2 A,

It follows from Lemma 3(a) that Az o = 2w2’21/JZ +o0(1), Ag = 2w2’2<p, Apo = QwZO,’QwM +o0(1), Agzrao=
WS’Q’(/JzzT_’i +o(1) and Apzo = WS’Z’(/JMZ’i + 0(1). It follows from these results, (S4) and the fact that for

s € {—,+}, pzzms — pzpzT is positive definite that Y = var + 0 (1). It follows from Lemma 3(b,c) that
v, =0, ((nh)flm). By these results,

A A
ALZ2AEZT 2\112 = AM2’2 \I’-l-’_}/;[ (\Ifz— Azj \I/>
= W (B — g W) +op (k) ) (538)
By arguments similar to those used to show (S22),
N2
~ WyaYs) ()T (Wi2))
,lgmc =T Amc + 839
P=Uy -], hZ T or) W) (539)
Then,
_ 2 _
L 00 (05T 02| (S W)
nh 5 1+ (/\E’C)T (Wy,iZi) - 1= {age]] max Wi Zi|
= 0, ((nh)fl) . (S40)

It follows from Lemma 1(c) that Uy 7z, — Ayz, = O, ((nh)fl/z) Therefore, 5@C =Uy —AJ, 2t

0, ((nh)fl). Similarly, 0 = Up—A] AT +0, (( h)~ 1). By Lemma 1(b,c), Uy —ty = O, ((nh) 1/2)

and ¥p —9Ypt =0, ((nh)_l/z). By arguments similar to those used to show (S23),

{9\mc \I/]V[ _ AT _ _)\mc B
AY . T/JY,T _ MZ27'p +Op ((nh) 1)'
Ine by VD,
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Therefore, by this result and (S38),

-~ 1 1
M(ﬂgc—ﬂ) = m . W;Wp’l (Ei _/J'e)+0p (1), (841)

where €¢; '= M; — ZZ‘T’YM' Let €; '= ¢; — pt. Then,

e o AN 1 Wyaéi WpéD
m@p v ¢D,T> Yt ZZ:(M E[\/ﬁ Tor (1) (542)

follows from subtracting both sides of (S41) by vnh - Ae/vp +. By Lemma 3(b),

+1 1,1 +1 1,1
(9 = et ) bt — (D - D) ot

(p+ 1)

A; = ChPTL 4o (hp+1)

and Ag g = w2’2¢527i +0(1). It follows from simple algebraic calculations that 1¢2 1 = o%¢. Then, we have
Wpeé 2 0,2 _2
Var {\/ﬁ} =Az —hA; =w, 00 +o(1). (543)

Let ¢ € (0,1). Then,

W,iéi Woe 1 ) e
ZEU Vil _E[\/nh} = G B Wt~ B
B [n 7t Woe*| + not B W,
= (nh)"? ’ S

where the inequality follows from Loéve’s ¢, inequality and the equality follows from (S43), E [h_l \Wpé|2+§ =

O (1) and E [W,¢] = O (hP*2). (S44) verifies Lyapunov’s condition. By Lyapunov’s central limit theorem,

Zor i (Whpiéi — B[Wpe])
Vnh o d —a N(0,1).
\/Var |45 30 (Wyaéi = E[W,é)
The conclusion follows from this result, (S42), (S43) and Slutsky’s lemma. |
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S2 Proof of Theorem 2

S2.1 Calculating the nonlinearity bias of 5]';“

T
-1
e T — TA—1L — -1 — -1 _
Let G; = { D 0], } . Denote T = (ALAGL: A¢) N = Agho JAGY and Q = Aglo,
NAEA(?%JT,Z By writing Ay 2 as a block matrix and inverting,
-1 AT AZLL
Ap2z o — Ayt AZL AL ) — MZ 2 77272
_1 B ( ’ MZ'2 ZZT 2 MZ,2 AM2,2—AA12T,2AZIZT12AMZ.2
To= -1 _
vu'.2 _ AZZT’QAMZQ A-L _A-L Anz 28027 o AL
AMz,Z_AAIZT,QA;;T)QAJ\JZ,? 2772 2772 AM2.2_A1\/IZT,ZA;;TWZAJWZ,Q ZZT 2
(545)
By straightforward calculation,
0 0,
d.+1
Q= (546)
-1
Od,z-ﬁ—l AZZT’Q

Consider the singular value decomposition of A[;llj/ T2 2 (—Ag):

A
STAL 2, (—A6) T = ,
0d,+1

where STS = I 12, T = 1 and A = ,/AEAI}}JT ,2Ac. We follow Chen and Cui (2007) to rotate the

moment conditions by STA;%J/TQ , 80 that results from Chen and Cui (2007) can be applied. Let V; (f) :=

STA[_JIU/TQVQUi 0), V; =V;(¥) and H; = STAI_JE/E’Q (—G;). Tt is easy to see that the criterion function is

invariant to the rotation:

] 1
GEO1h) =sup 2 _log (1+AT (W,,Vi (6))) -

Let Xg‘c denote the Lagrange multipliers
Tme . 1 § T am
)\pc = argi\naxﬁ : log (1 +A (Ltp,t‘/t (ﬁpc))) .

~ T ~
It is clear that we have AT = (STA;]/ETQ) (0, (Ag‘C)T> . Lemma 4 implies that AT = O,, ((nh)_1/2>. Let
T

~1/2

Q= A_l. Then, Ava’Q = Idz+2 and AH = STAUUT 2

(—Ag) = [ A 0 " } . By inverting the block

matrices and simple algebra,
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-1
—AvaQ AH

AL 0

—1 —1
7A\_/%/T,2 JrA\_/%/T,zAH (AIIA\_/%/TQAH> AEA\_/%/T,Q A\_/%/T,QAH (AEA\_/%/TQAH) ]

(ALA;%,TVQAH) "ATAC (ALA—l AH) B

0 0441 Q
O0a.+1 —la.+1 Og41 | =

Q 0<1+1 02

VVT 2 VVT2

UuUT,2 UUT 2

_STAYZ QA2 s _STAY2. N
vuT 2@ . (S47)

T Al/2
~NTAYZ: S =

The first order conditions are given by

v
7 1+( me) (W, w(ﬁpmc))

oY A(WiiHi)TAg*cA | (548)
i 1+()\g‘)

Let 52“ = 5pm° — 1. Theorem 1 implies that 151’;“ =0, (nh)_l/ ) Denote XA/Z.’“C =V (5;”) By simple

algebra, we expand the right hand sides of (S48) to get

~ \T R 3
)\mc V) c
- prz@m{l<Xz~c>T<wm>+<<x;wc>T<Wp,@mc>>2 (65 () }
i 1 JVme

(S49)

- z%mr{l<chf<wm>+<
1

By \A/imc =V + H,-@g‘c, triangle inequality, Lemma 3(a,c,d), Markov’s inequality, Lemma 4 and 1§me =
Op ((nh)_l/Q), we have

. 3
e () (59
% P A( pT) ( PA ) _ Op ((nh)73/2)
1+ (x\g‘c) (Wp,z‘vimc)
H;) ' Ame Ame) e >2
%Z ((Wp,,H) pA> <£>\p ) A(Wn Vi ) ~ o, ((nh)73/2>.
1+ ()\g‘c) (Wp,z‘vimc)
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By Vme =V + Hiﬁg"c, 19;)“ =0, ((nh)_l/Q) , Lemma 3(a), and Markov’s inequality,

% Z W, VM = % Z W,,:Vi + % Z Wy, Hy0me
” D WiV ((X;,"C)T (Wp,ﬁ/im» - = Z W2V R+ Z v, ( (o) Hiﬁ;?C)
+ih Z W2, H;me (VJA;‘C) +0, ((nn)~%)
= Do WV <(X;"°)T (Wp,f/i"“)f = = Z Vi (VTRE) 4 0, () ?)
% Z (Wy.i Hi) " Xpmc ((X;)“C)T (sz‘zmc)> _ % Z w2, (H;FX;\;C) (ViT:\\;)nc> 10, ((nh)—3/2>

By plugging these results into the right hand side of (S49), we have

,AvVT,QX]TC + AH1§;‘;C - — Z WpiVi+ — — Z 2, ((X]TC> ﬂmc) L Z (VT)\"“)
+E Z W;iHi'ﬂ;‘C (V;T)\;"C) + (\Ilvv—r 9 — Ava 2) /): (\I;H AH) ﬂmc

+0, ((nh)_3/2>

Apime = % Z w2, (Hf X;;"C) (VJX;‘C) — Uy —Ap) AT+ 0, ((nh)*"/?) . (S50)

We now switch to coordinate notations. Let a* = Ayw, o = Apwyag, oM™ = Apwyoym s, and
’ykil = Av(k)H(l)}Q. Let A% = Uy, AW = ‘IIV(k)V(n 9 — Av(k)v(l)’Q and C* = Ve — Apge. By multiplying
both sides of (S50) by (S47) and replacing ()\z“c, 192“) with their leading terms in the stochastic expansion,

we can get a stochastic expansion for ()\g‘c, ﬁg‘c) in the form of a quadratic polynomial of (Ak7 AX Ck). The

algebraic calculations have been done in Chen and Cui (2007) so that we use them directly here. In the
following proofs, summation over repeated indices is taken implicitly with the “3"” notation suppressed and
ranges of indices fixed: k,I,m,n,o,v =1,....,d, + 2 and a,b,c,d =1,...,d, + 1, e,f,g,h = 1,...,p. By these

calculations and Lemma 3(c), we have
@gc — QA 4 QAT IR AITR L 20T AL — Qlitaldb glta gltb Q2,y1+a:1A1+aA1 +0, ((nh)fii/?) )
Let Ak := W 4 — o, then we have

dpe = -0 (A +at) 417+ <+ 17+ 0, ((nh) ™2, (S51)
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where

I{nc — QAl 1+aA1+a + Q2OIA1 o Qal 1+a 1+bA1+aA1+b o QZ,Y1+a:1A1+aA1
Ignc — QAl 1+aa1+a 4 QQClal _ 29(11 1+a 1+bA1+aa1+b _ QQ’yl+a:1A1+aO¢1 _ QQ,yl-l—a:lal—i-aAl
I:;nc — 790[1 1+a 1+ba1+aa1+b o Q2,Y1+a:1a1+aa1.

1< is the interaction term of the smoothing bias and stochastic variability. 5 is the second-order smoothing

bias. The nonlinearity bias is defined to be the leading term of the expectation of IT"°. By straightforward

calculation and Lemma 3(b), we have

B[t o]
Blcta] -
B [/‘iwa/’lub] _

E [;i“a/il] -

Therefore, we have E [I]"]

by (S47), we have

1
{E
n

1
nh @
1
{E
n

| =

/_M\b‘
Il &

—

— o
=

Q 3Im B 3|~3

/N

1 1 1 1
|:<hW:3V(1)V(1+a)) (thv(1+a)>:| ) |:hW§V(1)V(1+a):| E |:th‘/(1+3):|}

11+al+a

(;WpH(l)) (iwpvmﬂ -E HW,,H(”} E HWPV“)]}

. 71:1 4 O (n—1h1+p)

h
b) + O (n—1h2<1+P>)

/1 1 1 1
(hwpv<1+a>> (hwpv(l))] ~E [thV““)} E {thV(UH

/1 RW2! 1 NS
<WpV(1+ )) (thV(1+b)>:| —E |:thV(1+ ):| E [thV(1+b):| }

n*th(lﬂ’)) .

(nh)~' (224! +0(1)). Since

STA,;}/?,2 (—Ag)

=eq, 2.1, (S52)
AEA&%JTQAG
g B sC
AgAl_ﬂle,zAG
o AU
AgAl_ﬂleQAG
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Therefore

B33 (AGA7E- ,6) (MU%JT U]

9271:1 — (853)
(Acags- 2AG)
By (S45), we have
Ap-D
AGAUUT QG > -1
Apzo — Azt QA’ZT QAMZ 2
T _ AD (M AMZT 2AZZ-|—2 )
A AUUT 2 =
Appz o — A]MZT,2AZZT72AZMZ,2
1 A
AGAUUT YAg = D . (Sh4)

_ -1 _
Aprz o — AJVIZT,QAZZT’QAJVIZ,Q

y (S37),

A _ A
M AMZT 2A ZT2 (M Al\i72>7]—\|—4 (Z AZ272>.

By these results, p = vm +0 (1), Apo/ADo = s +0 (1), Azo/As = uz +0(1), (S53) and Lemma 3(a,b),

021 = _AD2E {hWQ (M Azt A% e 2 )D}
Covo= [¢, D
= W02 éjﬁ[] +0(1). (558)
D.,t

S2.2 Calculating the nonlinearity bias of J%

Similarly, denote Y= (ATAU%JT zAg) N AUlle ZAgZ and Q AUUT P ATAU%]T o2 By writing

AyyT 2 as a block matrix and inverting,

~ ~ ~ ~ -1 Aot AL
-1 MZT 2 ZZT 2
~ (AMZQ - AMZT,QAZZT QAMZ,z) N N - <
AL = o M227BnzT 2 Z{TQ MZ,2
uu',2 L ézzT’zANMZﬂ _ ﬁil_ _ &il_ _ Anz, QAMZf 2 Eil_
Apr2 =BT 2B 7 ,Bmz 2272 ZZT 2\ Aypo =By, 5 ZAZZT SR ZZ7T .2
(S56)
and by straightforward calculation
0 0]
~ d.+1
Q= : (S57)
-1
Odz+1 AZZT,Q
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Consider the singular value decomposition of E[_JIU/E 2 (—Eg):

_ _ A
—1/2
STAL, (—AG) T= ,
0d.+1

where STS =1y 4o, T =1 and A= \/ALA L, JAg. Let V; (0) = STA, /7 ,U; (0), Vi i=STA, /2 ,U; and

H; = STAE%J/TQ’Z (—G;). The estimator 5‘;}’ = argming (2 (0 | h) is invariant the rotation, where

€ 1 117
(0| h) = sup - Z log (1 FAT (Wp,ivz- (9))) .
Let X;b to denote the associated Lagrange multipliers:

X;b = arginax % Z log (1 + AT (Wp,iVi (5;}’))) .

~ ~ T ~
Then )\;b = STA}J/[?TQ (O, ()\;b)T) and Lemma 2 implies that A;b =0, ((nh)fl/z). Let Q := A=1. Then,

.
AyyT o =14, 40 and Ay = STAE%]/%Q (—AG> = [ A Oji—z+1 } . By inverting the block matrices,

—Ayyra Apg

AL 0
~ ~ e~ N D ~ e ~ N\
-1 -1 -1 -1 -1 -1
_ “Ayyr ot AyyryAn (AIIAVVTQAH) AEAVVT,Q Ay An (AEAVVT,QAH)
= — Nl JO ~ N\
(85801 a8n)  BJAG, (8580 r 250)

0 04,41 Q . . - -
2 /2 1/2 1/2
_STAUUT,QQAUUT,zs _STAUUT,QN (S58)

i -
~NTAYS S =

= | 0g,4+1 —Tg,41 04,41

Q OLH 02

Let @;b = 1/9\;b — 9. Theorem 1 implies that 1§§,b =0, ((nh)_1/2). We expand the right hand sides of the

first order conditions




and use Lemma 1 and V; (5;}’) =V, + Hiﬁgb to get

“Ayyr AP AP = _nih Z W,.Vi + % Z W2V, ((X;b)T H,&;b) Z (Vr Aeb)
+7Tlh Z W Hil? (ViTX;b) + (‘I’VVT o= Ayyr 2) As (‘I’H - AH) b

+0, ((nh)*g/ 2)

Amde = % Z w2, (HiT X;b) (WX;b) - (@H - EH)T 340, ((nh)*?’/ 2) . (S59)

Denote Ak := Uy, AKX = \Ilv(k)v(l)72 — AV(k)V(I)72 and Ck := Ve — Ape. Let akm .— Av(k)v(l)v(m)73, and

Akl = AV(k)H(I)72. By (S58), (S59), calculations in Chen and Cui (2007) and Lemma 1(c),
,Slzeob _ —QAl + QAl 1+aA1+a + QQClAl _ QO[l 14a 1+bA1+aA1+b _ 9271+a:1A1+3A1 + Op ((’I’Lh)_3/2) ) (860)

Denote @& := (H_l)(Ef) and S&f == ﬁ](gei) - HI(,?? for s € {—,+}. Let

Y25

Sik — % Zrée) (i?) K (J}i ) 1(X; >0) (VZ( ) Gy ® (Xi))
gek % () (i‘;) K (X ) 1(X; <0) (Vi( gy (X ))
T¢ o~ B :}tréa (f) K ()}f) 1(X >0) H(k)}
T . g :}trz@ (f) K (f) 1(X <0) H(“}
o = B :lllr](f) <)h(> rg) <)h(> K (‘;f) (X >0) vy }
g :111’"156) (if) e (f) K (f) 1(X <0) V(")V()}

Let of = (nh) ™'Y, Wp,ig\/(k) (X;), Ax = (nh) ™! D Wp,i (V;(k) - gv® (Xi))7 AM = \T’v(m/(l),z - £v<k>v<l>,2
and CK == ‘T’Hw — EHm. Note that

Ak — ok AF = %Z(Wp,ifwm) (Vi(k)*gvm (Xz'))
= e 1) () K () 10620 (4 - )
i e (1505 () <i‘;> 06 <0) (- 05).
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~ 1 - o
A AM = — 3 (Wm _ Wm) vy
n -
LS er (oL ;) i (k) 30)
= % Zep-i,-l,l (HPHF - Hp,+> Tp <h K 7 1 (Xz > O) ‘/; ‘/z
L i - i i k) (1
—= > e (Hp}_ - Hp}_) m(50) K h) 1(x; < 0) vy 0

and

ck ok = % > (Wi = W) Y
I Xi Xz
= e (- m ) (5) & (5 1en > 0
7

L T =1 1 X; X; ®
_% zi:ep+1)1 (Hp77 — Hp’i) Tp (h K 7 ]l (XZ < 0) E[Z .

By Chebyshev’s inequality, change of variables and also (S1), (S4) and (S5),

A = Aok - alesaTESE 4 015U 0ESE + 0, ((nh) 77
A =AM 2. plesfoE ! 4 2. plegfpEIE e 4 O, ((nh)*l)
C* = C* - @lesTRBTH + 015U 0E T 4 0, (nh) ).

Then, by these results and (S60),
'l§eb —_0 (gl + O[k) +Ieb +Ieb +Ieb +0 ((nh)f?)/Q)
p = 1 2 3 P )
where

1= -0 (-elsfelst! 1 olosalgE?)

+Q (El e _ 9. plegefpferEht taght o . plegefpleyysh! 1“<I>'11) At

102 (61 _ ‘I’}fsjf@ffril I <I>1_eSe_f(I>fETg_l) AL — Qatltateb flta flab 2, 1+ail flta g1
P = O (Zl Lta _g. plegefpehditaght _o. <I>£esif<1>ffngj““+a<1>'f) al*e

+02 (C1 = @lesy o TE + 0150 YE ) ol — Qal TR b I Hag 1t

_ 2yl flragl 2, 1ail gt gl

I§b — —QOLl 1+4a 1+ba1+aa1+b _ Q2,yl+a:1a1+aa1'
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Similarly, I$® is the interaction term of the smoothing bias and stochastic variability. I§b is the second-
order smoothing bias. The nonlinearity bias is defined to be the leading term of the expectation of I®. By

straightforward calculation and LIE,
B[ss8!] = E [s958"| =B [sfA1+] =B [sA+] = [s74!] =B [s4] =0
Therefore,

E [Ifb] —0.E [1@ 1+agl+a} +02.E {5«121} _Qalltaltb g [ﬁ1+ag1+b} _ 2yl LR |:A~1+aA/1:| . (S61)

Similarly, by straightforward calculation,

1 afl4a] 1 [1 = a a
B [Al L+a J1+ ] = - {E ﬁW{fV(l)V(H ) (V(1+ )~ guase (X))}}
SO 1 I
1] b 2o (v _ o
B[CA] n{E SW2H® (v gv()(X)>]}
Al+a g T 1 a
E {AH_ A1+b_ = - {E ﬁwz (V(1+ ) — Gy (1+a) (X)) (V(1+b) — gy (14b) (X)):| }
T 1
1+a »1 772 1+a 1
E [A A = 2 {E W (V< +2) _ g ee (X)) (v< ) — gy (X))} } (S62)
Then, by
A, ()
=€d.+2,1;,
ALA g A6
we have
T —
o ALAGL: G
AZ A(;UT YAXe
TA-1
v = — AdA5U . (S63)
ATAEUTQ G
By (S24), (S57) and (S58),
VI gy aim (X) = ZTALLrg7(X)
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By (S56),

Ap-D
T 1 D
AAUUT2G2~ N AL A
Appz g — AMZT,ZAZZTQAMZ,Q
Z2
ATA L Ag =
vu AMQQ_AMZ—r 2Azz‘r QAMZ,Z
ATAUlle U = Ap-— M_~AMZT 2A_ZZT72Z
AM2,2_AMZT 2AzzT 2AMZ,2
g (X) = ApzroAG L L92 (X)
AL 90 (X) = Ap-—= A (S64)

-1
AM2,2 - AMZT,QAZZTQAMZ,Q

By these results, the fact that Ap = wp,s +o(1), 52,2 =2 (w2’2/<p) pz +o(1) and Ay =2 (wg’Q/cp) +o(1),
(S62) and Lemma 1(a),

B33 (R6A 50 ,U) (274,07 ()]

A AI;UT QAG

1~
O-E [h[/ng(l)v(lﬂ)gv(1+a> (X)} = _

— A;'AZ'E {hw?’ (M Apizr2Bghe, )]

~ —1 _
~ 1 Ar ~ Az oA A
-ALNE [hw (M AMzT 2AzzT ) (ZT —=2 2) (AZZT,Q e ZT72> (92 (X) - ~Z’2>

Ay Ay

Then by (S64), Ap = ups + o(l), 3272 = 2(w2’2/<p) pz + o(1), Ay = 2(w2’2/<p) + o(1), AMQ =
2 (w9?/¢) pas + 0 (1), (S24) and Lemma 1(a), we have

B3 (B5A5- 16) (BEAGh- o0 ()]
(ATAU%JT QAG)2

~ 1~ ~ -~
= —A}E {hWPZD (gM (X) — AMZT,QAZ%TQQZ (X))]

1=, EM,2 ~T 52,2
thD<9M(X) A, T <QZ(X) A, ))]

1~
0. B EW;H(l)gV(n (X)} =

= —ApE

= o(l).

Therefore,

O-FE |:A~1 1+aﬁ1+a} % . (Q . al 14+al+a Yo (1))
0. E [élﬁl} - % (2 4 0(1)). (S65)



By (S57), (S58) and (S63),

1~
Qallta 1+bE |:hW;gV(1+a) (X) gy (+b) (X):|

3 (AT A1 > > A1 e X1
(e (558 ) 227 B 6 00 )
AEJAZ;}]T,QAG
By Lemma 1(a),
1~ w)? L pgr
B | W0z (1) 927 ()] =222 o)
v Mz HzPzT
by (524),
A1 1 5 x-1 wp? o
Bghr o |3 W02 (X) 0z (0)| Bghr, = (252 +o(1)
’ ’ L4 00
By this result, (S66) and Lemma 1(a),
0,2y —1 ~— e~
2.2 E | tW3 (ALA L+ U
1~ Rp \TGTUUT 2
Qal 1+a 1+bE [hW;sgV(“ra) (X) Gy iev) (X)] — ( ¥ ) NT[N_l ( _ )} + 0(1)
AGAUUT,QAG
0,2 -1 1~ - -~ _
- (2 . ) AGE [Wg (a - AMZTQAZ;T’QZ)} +o(1)

And, by (S24), (S58), (S63), (S64) and Lemma 1(a),

1

QQ 1+a:1E
i h

W2gya+m (X) gy (X)}

hoP ZZT 2 Ay TQ
Then,
Qall+alth g [glJraij} = % . (Q caltttalta g, (1))
Q2’71+a:1 ‘B {Avl—&—agl} - 0 ((nh)fl) . (867)
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And, by Ap = b, +o(1), (S24), (S63), (S64) and Lemma 1(a),

B3 (ALAG}r ,6) (BEAg)-,U) ]
(A AUrle 2AG)2
= APE HWPQ (M= Ayzr2B7% ,2 )}

1~ AM2 ~T 522
WD | M~ Z -
Ay Ay

Co ,D
= wg,z . 7‘]'02 [, D] +o(1).
PUD

QQ,_YI:I

= AGE

The conclusion follows from this result, (S61), (S65) and (S67).

S3 Proof of Theorem 3

The following lemma provides simple bounds for projection coefficients.

Lemma 5. Let V' be a random variable and w be a nonnegative random variable. Assume that E [wPPT] 18

invertible. Then,

mineig ((E [wPPTD_l) |EwPV]|* <E [wV?].
Proof of Lemma 5. Denote 3 = (E [wPPT})fl E [wPV]. Then, we have
0 < Elw(V-PTp)]
wV? +BTE [wPP"| B -2 B E[wPV]

Ef
= E[wV?] —E[wP V] (E[wPPT]) ' EWwPV]
El

wV?] — mineig ((E [wPPT])_1> IE [wPV]|?.

Lemma 6. Suppose that the assumptions in the statement of Theorem 3 are satisfied. Then, ||77* - PT'VPHOO =

O ((ax + h) Br), where vp == A;lpT’QzMP72.

Proof of Lemma 6. Let v* := argmin, ||7]* — pT'yHOO. Then, by triangle inequality,

[ =p el < lln* =p 7|l + 0" =T 7p]| . - (S68)
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where oy, == Hn* — pT’y*HOO. Write

" ()7 =p" (2)vp| = p"(2) A;}DTQAPPT,W* —p' (2) AI_D}JTQAPM,Q

le N |[B5hr o || Branz = Bppr v

IN

Then by this result and writing APMQ — APPTQ’)/* as E [hilwgP (M - PT’y*)}, we have

IN

ﬁk . maxeig (Z;}JTQ) HEP]\/[72 - ZPPTQ’V*H

B, - maxeig (3;}37’2) {HE HWEP (M — " (Z))] H n HE [;WI?P (" (2) - PTV*)ﬁiHG}))

o™ —p"vp|

IN

It follows from mineig (EPPT’Q) > Ayo if b is sufficiently small and Lemma 1(a) that maxeig (&;}DT 2) =

~ -1
(mineig (A P PT,2>> = O (1). Similarly, it follows from the fact that

(mineig (&;}3772)> = maxeig (&PPT)Q) < AT

~ ~1
if h is sufficiently small and Lemma 1(a) that (mineig (A;}DT 2)) = O (1). Then, by this result, Lemma

5 and Lemma 1(a),

2

e [iwzr @) PTr)]

< (mineig <£;}3T72)>_1 E [hwpz (77* (Z) - PT'Y*)
< (mineig (g;}ﬂQ)) B £20éi

= 0(a3). (S70)

By LIE and triangle inequality,

HE [;LWPQP(M —n (Z))] H < HE [}ILWILP (9a112x (2, X) — (Z))] H
+[e [P e 2.0 - @)
+ HE [;Wpﬂp (W3 (Z2) =" (2))| +E HWE;P (B2 (2) = (Z))(H‘fl)

By Lemma 5 with w = WPQ; +/h, Lipschitz continuity (Assumption 4(e)) and Lemma 1(a),

2

HE [;W;JFP (9m12x (Z, X) — (Z))]
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< <mineig ((E HW;*PPTD_I»l HE [iWL (9anzx (Z2,X) — 113, (Z))Q} ’

1— < 1— X
< maxeig (E [hW; +PPTD A L2h* < B [hW; 4 GALZh® =0 (R?). (ST72)

A similar bound can be shown for the second term on the right hand side of (S71). Denote 7' (Z)

(13 (Z) — p*(Z)) /2. Then,
E |:]11wpz;+P (1% (2) —n* (Z))] +E [;LW;P (0w (Z)—n* (Z))} =E E (W;Jr - W5;7> Pyt (Z)} .

Denote /Ep;s = ey 1L, () K (t) for s € {—,+}. Then, Wp;—l— = /Ep;Jr (X/h)1(X >0) and Wp;_
i@,;_ (X/h)1(X < 0). Now we can write

E [ﬁéﬁn* <Z>} — [ R (D@ 2)] X =) fx ) dy
And, for z,y in the right neighborhood of 0, by Lemma 5 with w =1,
IE[p(Z)nt (2) | X =y] fx (9) —E[p(Z)n' (2) | X = 2] fx (@)
—E[o(2)nt (2) (fx12 (0 | 2) = fxiz (= | 2)]|)°

< maxeig (B [PPT)) B [(1)* (2) (x12 (0| 2) — Fxiz (2| 2))°]

By this result, change of variables and Lipschitz continuity (Assumption 4(e)),

H [W§+P77 ] ( ’C2+ )d“>7/’Pn*(Z),+
<

/ K3v @IE [0 (2)0' (2) | X = hut] fx (hu) =6y )+ d

< ( / K2 udu) \/maxeig (E[PPT])E [(mf (Z)] L3212,

Similarly,

oiscri ] (] - m)min o

By these results,

HE H (W2, — w2 ) P (Z)] H - H </01 K2, (u) du) Pputzys — (/01 2 (u) du) wpnf(z),H o).
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By Lemma 5 with w = 1 and the expectation being replaced by the conditional expectation given X = z,
|E [Py (2)| X =2]||” < maxeig (E [PPT | X =2]) E[(n! (2)* | X =2].

By this result and Assumption 5(b), O (1) for s € {—,+}. By Assumption 5(a), ¥pyt(z),4+ =

Upt(z).—- And by (85), [i K2, (u)du = ¢ 202 + O (h), [y K2_ (u)du= ¢ 202 + O (h), it follows that

(W2 - W;_) Pyt (Z)} H —0(h).

HE HW,@P (W (Z2) =" (z))} +E HW;_P (1 (2) = (2))

e

It follows from this result, (S71) and (S72) that HE [ 1VV2P M —n* ] H = ). By this result, (S69),

| I

S

(S70) and maxeig (ﬁ;}ﬂ 2) = 0O(1), we have ||p Y —p ’ypHOO = O (Bk (o + h)). The conclusion follows
from this result and (S68). [

Lemma 7. Under the assumptions in the statement of Theorem 3, (a) H\TJPH = Op( k/ (nh)); (b)

H‘/I\/PPTQ - zPPT72H = <5k log (k )/(Nh)); (c) m?X HWp,ipi =0, (Br)-
Proof of Lemma 7. For (a), write
= o S il = o S W (Xt 3 W (= e 6 3 (W = W) (2 = g (X0).

?

(S73)

Then, by Taylor expansion and pp4+ = pp,—,

(p+1)
hZW’”gP (m <1 )< ) )hpﬂ’ 579

where X; denotes the mean value that lies between 0 and X;. Then by Assumption 5(d) and (S11),

) 2 Whige (X0)

=0, (\/E . hp+1). Then, for the second term on the right hand side of (S73),

2
1

:W'EWI’Q 1P~ gp ()] <7 B[W2PTP| = nlh tr (Appra).

(S75)

nih Z Wi (P; — gp (X1))

Since tr (EPPT72) <E [h_lwz?tr (E[PPT | X})} < A5k, when h is sufficiently small, by Lemma 1(a), we
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have tr (ZPPT,Q) = O (k). By this result, Markov’s inequality and (S75), we have

%ZW“P@‘—QP(XO)—O% :h> (S76)

Write
% Z (ﬁ/\p,i - Wp,i) (P —gpr (X))
_e;ll(n— ;1){nhzrp< ) ()}i)]l(X > 0) (P —gpf(xi))}
el (H L ) {nhzrp ( ) (ii) 1(X; <0) (P} = gpr (XZ-))}. (S77)

Then, since the operator norm is dominated by the Frobenius norm,

i ()5 (1) 6x- 0 a0

For all j =0,...,p,

S (B (3) 0o oo ()

follows from arguments similar to those used to show (nh)™' > WW- (P, —gp (X)) = Op< k/ (nh))

Therefore, it follows from this result and (S5) that

el (ﬁ];}+ - H;,g) {nlh Zi:rp (Xh) K ()}i ) 1(X; > 0) (P} - gpr (Xi))} =0, (ﬁ) .

Similarly, the second term of (S77) is also O, (\/E/ (nh)) The conclusions follows from these results, (S73),
(S74), (S76) and (S77).

For (b), write

\IIPPT,Q - APPT,Q = l:[}PPT,Q - \IJPPT,Q + \IIPPT,Q - APPTJ' (878)

Write

~ - 2 _ — N\ — 1 - N2
Uppro—Upprs=— 3 (Wi = Woi) Wpi PP + ==~ (Wpi = Wya) PRI, (ST9)
4

i
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First, by triangle inequality, Loéve’s ¢, inequality and (S5),

nhz(

pZ> PiPz'T

- (nhzﬂm () (G wme)
Pl - ;4‘<h§:1X<m () <iﬁna$§>

By LIE, tr (E[PP" | X]) <k if X € (—h,0) U (0,h) and h is sufficiently small, and change of variables,

#(%) ()G

h
By this result, Markov’s inequality and (S5), the first term on the right hand side of the second inequality is

1
h

1

2 X
E K2(Z=)|PIP1(x -
(F)1eri=ol - |

)]1()( >0)tr (E[PP" | X])

O, (k/ (nh)). A similar result holds for the second term. Therefore,

k

nhz( :Op<nh)'

p 1) PiPiT (881)

By triangle inequality, (S5),

nhz<

)Wp’E[PPT|X]

(Wm _ WW-) W, |E[PPT | X

=0(k).

T—1
g

pqwmqm
s H(nhEZ

S
n HH,,,,

%(EN

since |[E [P | Xi]|| <@ if X; € (—h,0) U (0,h) and

2
K2<

2
K2<

SRCEUICETERe()

=| :\N

)]1()( <0) HE[PPTIX]H)

-0, ((nh)_1/2> . (S82)

h is sufficiently small. Since the operator norm is

dominated by the Frobenius norm, by triangle inequality and Loéve’s ¢, inequality,

B[P | X))

(;h = (7,

j=1j/=1
~ 2 k k 1 X
—1 —1 ?
<[im - m oS (3
j=1j'=1 i

S33

o (5o

2

Wp,i) W, (Pimpi(j) E[P(J (>|XD>2

2

)




| 2

2 k k
51 -1
Hpﬁ - HpﬁH Z Z
j=1j'=1

0 2.7 <)Z) K ()zi> 1(X; < 0) Wy s (Pfj)P e [P or) XiD

(983)

Then, by simple calculation,

2

»(%)

NS (f) 1(X >0)W2, (P<J’>P(j'))2]
+(%)

1
- ___E
nh? [

And, by LIE, tr (E [PP" | X]) < k7 if X € (—h,0)U(0, h) and h is sufficiently small, and change of variables,

2 X _ A
K? <h> 1(X >0)W2, ||P]

1 X\ |? X — A
E lh ™ (h> K? (h> 1(X >0) W, [P
1 X\ |[? X —~
<Bi-E 7 || <h> K? <h> 1(X>0)W2 tr (E[PPT | X])| =0 (Bik).
Therefore,

15

j=1j'=1

ih S, ()}(LZ) K (ii) 1(X; > 0) Wyt (Pi(j)Pi(j ) _E {P}”Pfj )| XL]>
n -

J-o(h)

By Markov’s inequality and (S5), the first term on the right hand side of (S83) is O, ((ﬁzk) / (nh)z) A

similar result holds for the second term. Therefore,

_ (B
-0 (%),

It follows from this result and (S82) that

! W, W, W _
% ; (Wp,i - Wp,i) WPﬂ'PiPZ-T _ Op ((nh) 1/2 + -

By (S79), (S81) and this result,

(S84)

~ ~ _ k k
H‘I’PPT,z — ‘I’PPT,zH =0y ((”h) Y2y M + > .

nh nh
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By Belloni et al. (2015, Lemma 6.2) with p; = W, ;P;/vh and ||p;|| < Br/Vh,

Bilog (k)
nh

log (k) HAPPT,ZH

B[ rrra = Bera] < %

+ Br

It follows from this result and HAPPT’QH < A,7 that

H@PPTQ - 5PPT,2H =0 (ﬁk 10%!4;))

Part (b) follows from this result, (S78) and (S84).

Part (c) follows from max H/Wp’ipi

< (Saere i || T ]) Gupacz o ()10, (S1) and ($5). =

By Lagrangian multiplier method, we get

1
14 02)T (W7)

sieve __

w;

S|

where

/\Z""e = argi\naxz log (1 + AT (WP,H>) .
We have following result on the rate of convergence and linearization of )\ge"e.

Lemma 8. Under the assumptions in the statement of Theorem 3, we have ||)\§e"e” =0, ( k/ (nh)) and

[ = A5k LT = 0, (B / (b)),

Proof of Lemma 8. By similar arguments as in the proof of Lemma 2,

W2,PPT
+ (o) " (W)

sieve
)\P

1 = 1

and

(A;ieve)T BPPT,QA;EVE < ||)\;ieveH H\TJPH {1 + H)\;ie"eH max HWp,q',Pi

el [Eppr o — Appr s
When h is sufficiently small, (/\;ie"e)T ﬁppyz/\;fje"e > oA, H/\;ie"eHz. Therefore,

(- ]

[esrea Somval 3 < o]
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The first conclusion follows from Lemma 7 and A, = 202 /¢ + 0(1), which follows from Lemma 1(a).

By using the first order conditions, we have

)

CaXURII

14 (o) T (W)

T 1 1172 T
Up = %Zwmpipi- 1-

and
(PT )\S|eve)

O (o)’

\I/P—\I’PPTQ Sleve— nhz (885)

Then, by triangle inequality, Lemma 7(b,c) ||)\S'e"e|| =0, (x/k/ (nh)) and HAPPTQH = maxeig (KPPTQ) =
0 (1),

—~ ~ ) 9
PT)\SIeVe max‘ My H\I} T H | \sieve
nhz )’ <( il ) PrTa x5l :op<ﬁk:)' (586)
)\Sleve (M/;DJPZ') 1— ||)\153|eve|| mlax‘ i P n

By Lemma 7(b) and | Xiee|| = O, (v/k/ (nh)),

J; A sieve
H (‘I’PPT,z - APPT,2> Ap

_ Brr/log (k) k
_o, (nh )

The second conclusion follows from this result, (S85), (S86) and HAPPT 2H = maxeig (ﬁ;}ﬂ 2) =0(1). n

Proof of Theorem 3. Denote 1/9\?,6"6 =, wfie"ewp)iYi/h and 1/9\%6"6 =3, wfie"ewp,iDi/h for notational

simplicity. By similar arguments as in the proof of (S22),

1 W3 g ((}\5leve)—r Pi)2
{9\§i/eve _ \IJY . \I,YPQ)\Sleve + = Z . )
14 (o) " (W.P)

— (S87)

Then, by triangle inequality, Lemma 7(b,c),

_’ H = 0O(1) and Lemma 8,

) (o] I25IF)

L (o) " (Woapr) | 1= [[Agiee]| max [,

=0, <(nh)1/r : fh) . (S88)

W3 ((/\smve)—r Pi>2 (InaX ’/W\p,z)/z
< (2

1
ZRN

p,it i

Write \I’ypg — AYRQ = \IJYRQ — \I/yp72 + \I/yp,g - Ayp72. We have

(I\'YP,Q — ‘I’Yp,z = o Z( ) (Wp, +sz> 3 Y
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1 o _ X; X; = =
= = eyt (Hp’i - HP;) Tp (h) K h) 1(X; >0) (Wp,i + Wm) PY;

_% > epnn (TG =151 ) 7, (Xh> K ()}i) 1(X; < 0) (Wi + W, ) PYS89)

By triangle inequality,

1 T S -1 Xi Xi o

—> g (L —14 ), (h K (S5 11X > 0) W, PY,
X, X, —

()l () o

By LIE, change of variables and tr (E [PPT | X]) < ko,

() ()
a3 () (D)oo

n (30)] | () e > 01 [ | e e 1ppT T30 - VBT = 0 (V).

It now follows from this result, (S90), Markov’s inequality and (S5) that
k
=0 — .

A similar result holds for the second term on the right hand side of the second inequality in (S89). By these

P%II) - (S90)

1
El=
[h

IPy1]

B[Py | X]}

1
<E |-
<E|;

1 a _ X; X; —
— D e (Hp}+ — Hp;) Tp (h) K <h> 1(X; > 0) W, PY;

results,

(I\JYPQ - CI}YP)QH = /k/ (nh). And by LIE, change of variables and Lemma 1(a),

B||#ver. - zm\f < B W v P|?] < Big [ Ly o (2.
’ ’ — nh? p “nh |h P nh
I . ¢ _ . _ 172
By Markov’s inequality, we have Uy po—Aypo = O, (ﬂk/\/ nh) By Lemma 5 with w = W} /h, the fact that
maxeig (&PPTQ) = O (1) and Lemma 1(a), we have HEYP’QH < maxeig (KPPT’Q) ﬁng = O(1). Similarly,

H&D}%QH = O (1). Therefore, by this result, (S87), (S88) and Lemma 8,

. PO . .k
,ﬂilfeve _ \I’Y _ A;P,Q)\;Ieve + Op ((nh)l/ . nh)
S ol - k .k
= Uy — AV pyAppr VP + 0, (ﬁnkh + (nh)!/" nh) : (S91)
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By similar arguments,

“Jsiev ST AT : ﬁkk
z%ee:lI/D*ADmAPPT?\IjPJrO < nh Jrnh>

(S92)

By Lemma 1(b,c), Uy = py,+ + O ((nh)fl/Z) and U = upt+ O ((nh)fl/z). Denote €f = M; —n* (Z;).

Now it follows from Lemma 7(a), similar arguments as in the proof of (523), (S91) and (S92) that

o Uar —yp ¥ Bik ek
gsieve _ 9 — O h [
p WDt + nh +(nh) nh
Ups = U izy 4 Uy (z) — 50 k k
_ M Fn @) T e 2) “IP TP 0, (6’C + (nh)"/". ) , (S93)
1Dt nh
where we have
\/I;M - \/I\]n*(z) - \/I\Ie*
Uy(z) = 1pVp = — Z i — b0 (Z)) (594)
Denote 7 := n* — vjp. By Lemma 6, |9 | 0 as n 1 co. Write
1 = . 1 e —
— ZZ: Wyp.in (Zi =h Z pii — gi(z) (X)) + - Zz: Wiz (Xi) - (S95)
Then, by Taylor expansion, triangle inequality, (S11), p4(z),+ = fi(z),— and Assumption 4(b),
1 agn (%) rx\m
—NTW, 0500 (X)) = (A AL A i) B+l
nh;Wp’gT’(z)( ) nhZ (p+1)! (h)
1 | [(X\" 1l Pt
< =N W sup gt ()] )
{”h ; ‘ ! ( h } (mE(—h,O)u(O,h) @) (p+1)!
= o(h"th),
where X; denotes the mean value that lies between 0 and X;. And by simple calculation, |||, = o (1) and
Lemma 1(a),
? 1 1 1
0 /. 2 =~ e _
( 2 Vo (1(2) = g (X ))) =B [hvn? (i (2) = 9az) (X)) } < —-BorfilZ, = o ((nh)").

By this result and Markov’s inequality,
—1/2
nh Zsz = gi(z) (Xi)) = op ((nh) Y ) :

S38



By (S5), similar calculation and Markov’s inequality,

< ik = m ] <),?>K()}(;>1(Xi>0) (1 (Z) = 932) (Xi))|
s () () 10 <0 600 - o 50 = (007,

It follows from these results and (S95) that (nh)™" > w N (Z)=o, ((nh)flm). By this result, (S93) and
(S94), we have

Isi \/I}e* —1/2
PIVE — ) = + o0, ((nh . S96
; oy ()™ ?) (896)

It follows from similar arguments as in the proof of (S28) that

(p+1) p+1,1 (p+1) p+1,1 0,2,.2
Vb [ 9. — Pt Wiy~ R wp mt ) Sy N (o “p Topt |
(p+1)! ¢
The conclusion follows from this result, (S96) and Slutsky’s lemma. [

S4 Proof of Theorem 4

Let f : R2 = R be any function. Denote Y; := (}@Di)—r. Let

Ry (f) = max 2 Z log (n - w;)

W1 ,eeey We
1 _ _
subject to f (Z wthin) =0, Zwin,iZi = 04,41, Zwi =1

and for u € R?, let

R(p) = max 23 log(n-wi)

1 _ _
subject to Zwiﬁwp,m = pu, Zwin,iZi =04, +1, Zwi =1. (S97)
i i i

Note that Ry (0) < max{2),log(n-w;): >, w; =1} = 0 and similarly, R (x) < 0. Then it is easy to see

that by arguments in Section 3 of the main text,
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mgmef 0) = ml?xR(u) = max {2ZIOg (n-w;): ZwinZ = 04,41, Zwi = 1}

= QZlog (n-wi) = R*.
i
By similar arguments as those in Owen (2001, Section 2.4), we can write

{p:R(u)— R > —c;} = {,u : Jwy, ..., w, such that 2Zlog (n-w;) — R* > —c,,

7

Zwi%wp,iifi =, Zwin,iZi = 04,41, sz = 1}
— {sz}llezYl : QZlog (n-w;) — R* > —c,, ZwinZ = 04,41, Zwi = 1}
and
{:Ry(0) —R*" > —c;} = {8 : Jws, ..., w, such that QZlog (n-w;) — R*> —c,,
f (Z wi}lLWp,in) =40, Zwin,iZi = 04,41, Zwi = 1}
i i i

{ f (ijlwy> 2 log (0 w) — B2 —er, Y wiWyiZ = Oapns Y wi = 1}
= f ({szlllwpzyz : QZIOg (n-w;) = R* > —c, Zw@WmZ = 04,41, Zwi = 1})

fu:R(p) — R > —c}). (S98)

For any o € [0,1] and py,p2 € {p: R(n) — R* > —c;}, denote i :== apy + (1 — a) po. Let (w1, ..., 0p),
(W11, .y w1,,) and (wa 1, ..., w2 ,) be the optimal weights associated with R (@), R (p1) and R (p2) in (S97).
Then, since Y, w1 ;W,,;Yi/h = p1 and Y, wa ; W, ;Y /h = pia, we have >, (awq,; + (1 — ) wo ;) W, ;Yi/h =

f. By definition of (w1, ..., Wy, ), (W1,1,...,w1,n) and (w1, ..., w2, ), concavity of log (-) and Jensen’s inequality,

Zlog (n-w;) > ZlOg (n- (awy,; + (1 — @) wy)) = aZlog (n-wii)+(1—a) Zlog (n-wy) 2 _C%W

(3 7

It follows from these inequalities that R (1) — R* > —c,. Therefore, {1 : R (u) — R* > —c,} C R? is convex.

Write

R(9) = max QZlog (n-w;)
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Y; —0D;
subject to Zwi Whp.i

= Odz+2, Zwi =1.

%

Then, R (#) = —2n - €7 (0 | h). Note that we have 2n - £3 <1§g‘° | h) = —R*. Then, LR, (6 | h) < ¢, if and
only if R () — R* > —¢,. And, it is clear that CS,, . (h) = {0 :R(0) — R* > —CT}.

Consider the coordinate projection fp ({p: R (u) — R* > —c-}) of {p: R(p) — R* > —c, }, where fp (z,y) =
y. Then, by (S98) with f = fp, we have fp ({u: R(u) — R* > —c;}) ={0: Rs, (§) — R* > —c; }, where

R, () = max QZlog (n-w;)

W1,y Wh

subject to Zwi%Wp,iDi =40, ZwZ'Wp,Z'Zi = 04,41, sz =1L

Note that CSZ (h) := {0 : Ry, (0) — R* > —c,} is an EL confidence set for ¢p +. And it can be shown by
similar arguments as in the proof of Theorem 5 that R* — Ry, (Ypt) —4 xi and Pr[¢p+ € csP (h)] —
1—7. Let p = argmaxy Ry, (). By similar arguments, bp = Yo wiW,iDi/h (ie., fp is a covariate-
adjusted estimator of ¥p +) and Ry, (é\p) = R*. Assume pp+ > 0 without loss of generality. It is clear
that 0p € CSP (h). By convexity of {u: R(u) — R* > —c;}, CSP (h) is also convex. Let 0% = Apy —

_ -1
ADZT,QAZZTQ

Apz- By Lemma 3(a), 07, > 0 is bounded away from zero when h is sufficiently small. By
similar arguments as in the proofs of Theorems 1 and 5, we can show @\D —p ¥p,+ and a result similar to
Owen (1988, Corollary 1): for any § € R, Ry, (5,3) — Ry, (é\D —‘rO’D(S/\/’f%) —p 0%, Fix dp > 0 such that
82 > ¢;. Then wpal, R* — Ry, (§D — O'D(So/\/%) > ¢, and by convexity of CS” (h) and the fact that

0p € CSP (h),

wg’T <bp — TZ% <inf CSP (h) = inf fp ({p: R(n) — R* > —c,;}) < 0p.

Therefore, wpal, {p: R(u) — R* > —c,} CR x [thp 1+/2,00). Let f(z,y) == z/y. f is a continuous function
on R x [t)p+/2,00). Then it is clear that R () = Ry (0) and by (S98), €S (h) = {R(G) —R*> ch} =

Ff{p:R(u) — R* > —c,}). By similar arguments, wpal,

3

sup i ({3 B(0) = R > c,) = sup CS (1) < p + 2222 < S

and therefore, fp ({p: R(u) — R* > —c;}) is bounded. By using the same arguments to the other coordi-
nate projection, we can show that wpal, {u: R(u) — R* > —c,;} is bounded. The conclusion follows from

convexity and boundedness of { : R (1) — R* > —c,} and continuity of f.
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S5 Proof of Theorem 5

For a sequence of classes of R-valued functions §,, defined on S (a compact set in a finite-dimensional
Euclidean space), let || f[lg o = (f f2dQ) Y2 and N (s,&n, H||Q2) denote the e-covering number, i.e., the
smallest integer m such that there are m balls of radius € > 0 (with respect to ||-[|5 ,) centered at points in
§n whose union covers §,. A function Fg, : & — Ry is an envelope of §, if supeg, |f| < F5,. We say
that §,, is a (uniform) Vapnik—Chervonenkis-type (VC-type) class with respect to the envelope Fk, (see, e.g.,
Chernozhukov et al., 2014b, Definition 2.1) if there exist some positive constants (VC characteristics) Az, > e

Q,2 s S H'”Q,Q) <

(Az,/ &) n Ve € (0, 1] where Q% denotes the collection of all finitely discrete probability measures on S. In

and Vg, > 1 that are independent of the sample size n such that supgegwelN (s | F5, |

the proofs in this section, whenever applied to quantities that depend on h, the O, () and o, (-) (O (-) and
o0 (+)) notations are understood as being uniform in h € H = [@,ﬂ. For notational simplicity, let n = nh

and 7 := nh.

Lemma 9. Let V denote a random variable and {V1,...,V,} are i.i.d. copies of V. Let B denote an open
neighborhood of 0. Suppose that h and h satisfy h = o (1) and K is a symmetric continuous PDF supported
on [—1,1]. The following results hold for all (s,k) € {—,+} x N, uniformly in h € H: (a) if gv is Lipschitz

continuous on B\ {0}, for k > 2,

E HW&SV} = Pywi™ + O (h);

(b) if gv is (p + 1)-times continuously differentiable with uniformly continuous g‘(})H) on B\ {0},

1 (p+1) i1
E [hwp;sv] = v+ | Tl),wgglﬁlhpﬂ +o (h’” ) :
p+ 1P

(c) if gjv|- is bounded on B\ {0} for some integer r > 2,

1 ﬁl/r
i Z (WysiVi —E[WhV]) = 0, <\/ log (n) +log (n) - W) ;

(d) if gjv|- is bounded on B\ {0} for some integer r > 2, max; |Wys,;Vi| /Vnh = O, (A'/" /n!/?).

Proof of Lemma 9. We take s = + without loss of generality. Part (a) and Part (b) are straightforward
extensions of Lemma 3(a,b) and therefore follow from similar arguments. For (c), denote §(V,X | h) =

h=12Wk vV and Q == {G(- | h) : h € H}. Denote P} f :==n='Y, f (V;,X;), PY f =E[f (V,X)] and G} :=
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Vv (P} —PY). Then we have

161l = sup

1
— Wk Vi —E[WF_ V])|.
hel ﬁnhzl:( 25 [ P+ ])

Let 02, == sup;cqP" f?. It follows from LIE and change of variables that 03, = sup,cgE [h™'W2E g2 (X)] =
O(1). Since K is supported on [—1,1], we can write q(v,a | h) = KX (z/h) h="/?1(0 <2 < h)v. Since
Assumption 3(b) also implies that K%, has bounded variation Vk € N. By Gin¢ and Nickl (2015, Proposi-
tion 3.6.12), {x — IC’;H_ (x/h):he H} is VC-type with respect to a constant envelope and its VC charac-
teristics are independent of n. By Kosorok (2007, Lemma 9.6), {(z,v) = h~ /21 (0 <z <h)v:h € H} is
V(C-subgraph with an envelope (z,v) — h~'/21 (0 <z < h) |v] and VC index being at most 3. By Kosorok
(2007, Theorem 9.3) and Chernozhukov et al. (2014b, Corollary A.1), 9 is VC-type with respect to an en-
velope Fg that is proportional to (z,v) — h~/*1 (0 < 2 < k) |v]. By Chen and Kato (2020, Corollary 5.5),
E {HGT‘{HQ} < oqv/log (n) +log (n) (B |FQ|T)1/T n'/"/\/n, where PV |Fgq|" = O (E/QT/Q). (c) follows from
Markov’s inequality.

For Part (d), since |K (X;/h)| < 1(]X;] < h),

ma; (W Vil _ maxil (0< Xi <B) Vil _ (2,1(0< X5 <B) Vi)

Vnh 7 Vi - Vi

(S99)

Then,

h
E ZJI(O<XZ-<E)|VZ-|T :n/o g () fx (x)dz = O (m),

where the second equality follows from boundedness of gy~ and continuity of fx. By this result, (S99) and

Markov’s inequality, we have max; |Wp,; ;Vi| /m =0, (ﬁl/r/ﬁlﬂ). m

We define

Xr;c = arginax zi:log (L+ AT (W, 17))

Then we have

LR, (9| h) on (e;;c (0 | h) — £me (Eggc | h))

2 {;1% (1 + (X;;C)T (Wp,iUi)) - zi:log (1+ (e’ (Wpyiz))} .

The following lemma provides uniform-in-bandwidth rate of convergence and linearization for AJ' and ngc

Lemma 10. Suppose that the assumptions in the statement of Theorem 5 hold. Assume that nh P =
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O (1), and log(n) (ﬁl/‘l/Ql/Q) = o(1). Then, the following results hold uniformly in h € H: (a) Vnh -
A€ = 0p ( log (n)) and Vnh - A\J¢ = A;ng (\/nh . \I/Z> + Oy, (log (n) (ﬁl/r/ﬂlm)); (b) Vnh - Xg‘c =
Op ( log (n)) and vVnh - X"‘C = AEUT ) (\/nh : \IIU) + O, (log (n) (ﬁl/r/ﬂlﬂ)),

Proof of Lemma 10. By arguments similar to those used in the proof of Lemma 2,
()" Azzm o Ape < A 1920 {1+ el max [ Wy Zel| 4+ e 19227 2 = Azze o

and
(mineig (Azz7 ) = 19z ] max Wi Zif| - [ ¥ 727 - AZZT,QH) APl < 11wzl - (5100)
Write

Vah W, = N (W, Zi — E[W,2]) + Vah - A
=1

It follows from Lemma 9(c) that the first term on the right hand side is O, ( log (n)) By Lemma 9(b),
vnh-Az =0 (V nﬁsz). Therefore, vnh-¥; = O, ( log (n)) It also follows from this result, Lemma
9(d) that ||¥z|| (max; ||Wp,:Zi||) = op (1). By Lemma 9(c), ||Vzz7 5 — Azzr o] = Oy ( log (n) /@) Since

it follows from Lemma 9(a) that Agzz+ 5 = ¥zz7 +wd? + o(1), we have
inf mineig (Azz75) = mineig (Yzz7 2wp?) + O (h).
Therefore wpal, for all h € H,
mineig (Azzr ) — Wzl max [y, Zi]| ~ |2z 2 — Agzral| > 5 - mineis (4727 %) >0

Therefore, by (S100) and vnh-¥z = O, ( log (n)),

to those used to show (S20), we have

=0, ( log (n)) By arguments similar

L WEZ (2T ((w) (,.:2)
Uy =Wyz7 00— — . (S101)
nh L () (W,02:)
By writing (nh)~ Z |Whp.iZ;i H ||ZH272 as (\IIHZ||2)2 - AHZ||2,2) + A||ZH2,2 and Lemma 9(a,c), we have
\11”2”272 = Op (1). Then by using this result, Lemma 9(d) and Hm )\pmcH =0, ( log (n)), we have

W2 (209 (05) T Wa2) | (G S W l”) [V g 1] (max 390 )
Vih & 1 ()T (W) - 1= [Pxpemax [ W, Z]
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ﬁl/r

The second conclusion follows from this result, |¥zz7 5 — Agzz7 | = O, (\/log (n) /@),

|V e
Op ( log (n)) and (S101). Part (b) follows from the same arguments. [ |

The following lemma shows that {LR, (¥ | h) : h € H} can be approximated by the square of an empirical
process indexed by h € H. Denote PL f :=n~" Y, f(T;, X;), PT f = B[f (T, X)] and G}, = v/n (P}, — P),

where T, == (Y;, D;, Z7) " (similarly, T == (¥, D,27)"). Denote |Fllpr, = (BT |F|")"/". Let & () =

E [€2 | 1X| = x] and ¢ (- | h) be defined by ¢ (T;, X; | h) = h—1/2Wp7i§i/\/§(|Xi|) fix| (|Xi|)wg’27 where fx|
denotes the PDF of | X]|.

Lemma 11. Suppose that the assumptions in the statement of Theorem 5 hold. Then,

n

LR, (9| h) = {GTq(- | h)}* + 0O, <10g (n) T + log (n)*/* (;2)) .

Proof of Lemma 11. By Taylor expansion, 2n - {5 (@g"c | h) is equal to the sum of 2 ()\g‘c)T (ZZ Wp,iZ—),

_ 3 _\3
()" (Wpaz)| /(1= | 0e) T (W22)])
up to a constant. By Lemma 9(d), Lemma 10 and (nh)™" Do ||Wp,,-ZiH2 =0, (1),

_ N2
-3, (()\;‘;C) ’ (Wp,iZi)> and a remainder term bounded by ",

3

059" (W,.2) (S 752 ?) 1l (ma |02

3 - _ 3
) (1= e mas W, 2]

- 0 (log (n)a/g_ (nl/r>> .
p 21/2

2.

T (1= 0g) T (W.2)

Therefore,

> log (1+ )T (W5.2)) =2 () (Z vaizv,) > (0” (W,,,iz))2+op (log (n)*/2 . (ZL)) .

i

It follows from these results, Lemma 10(a) and W7z 5 — Azz7 5 = Oy ( log (n) /ﬂ) that

> tog (14 (A7) " (WiZi)) = (Vnh- 07) A, (Voh-ws) 40, (log (n)*? - (ZL)) :
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Similarly, we have

Zlog (1 n (X;C)T (vaiUi)> _ (\/rTh \I/U) UUT ) (\ﬁ \I/U) + O, <log (n)/2 . (Zi;;)) .

y (546),

0= (-40) o) (w0 0 (o (1))

Then by (S54),

(6 00) (35 0) () = (V00) e (8500 20) 8t (Vi )

2
(nh) ‘I’M—AMZTz 2772V 7
- ( 227 ) . (S103)
AM2,2 - AMZT,QAZZT’QAMZ,2

By 4 = v + O (k) which follows from Lemma 9(a) and

A2 ApraA
B -1 . =M2 -T M,2887,2
AMZT,ZAZZTQAMZ,Z = A, + VM <AMZ,2 A, > )
which follows from (S37), we have
_ 1 _ _ _ N2
AM2,2 - AMZT,QAZIZT’QAMZ,Q = E [hW;? (M - AM,2A2 L ZT’YM + AQ lAZT,27M) }

= ApatO(R).

By H\/ nh - \I/UH =0, ( log (n)) and Jar = v + O (h), the numerator on the right hand side of the second
2 _

equality in (S103) is {(nh)fl/2 > Wp,ié’i} + O, (log (n) h). Let ¢ (T}, X; | h) = h=Y?W,;¢;/\/Ae 5 and

- 2

Q:={G(-| h): h € H}. Then it is clear that {(nh)fl/2 W 261} [Ae o ={GLq(-| h)}2 and therefore,

LR, (¥ | h)={GLq( | h)}2 +0, <log (n) R+ log (n)*? - <Zi;;>> .

Denote 9 == {q(- | h) : h € H} and © := {¢(- | h) — ¢ (- | h) : h € H}. Then it follows arguments similar
to those used in the proof of Lemma 9(c) that 9 and 9 are both VC-type with respect to envelopes Fg
and Fg, where Fg (T}, X;) is proportional to h %1 (|1X:| < h)|&] /\/infrenAe o and Fq (T;, X;) is propor-
tional to h~'/21 (1X:] < h) &) //E(X]) fix) (X)), respectively. By change of variables, PTF}S <PTFf =

0] (E/E/z). By Chernozhukov et al. (2014b, Lemma A.6), © is VC-type with respect to the envelope
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Fo = Fﬁ + Fy. Let

oh = sup PT 2 = supE [(q (T, X | h) = G (T, X | h))’] .
fe® heH

By LIE and the fact that (W4 + W,—)* = K2, (| X|/h),

1 1
VAa, \kLMfmumw“

~1 37
_ /0 e 1/ 6'2X2‘ \/7 (S104)

Note that Ago = [;° h='K2, (2/h)€(2) fix| (z)dz and therefore, it follows from mean value expansion

1
E|- (WPH- + W, ;—)2 é

E[(@(T,X |n) = (T, X | )] -

and (S104) that 0% = O (52). By Chen and Kato (2020, Corollary 5.5), E[||G]||5] < oo+/log(n) +
log (n) ||F@HPT’TTL1/T/\/E and therefore, E [HGEHQ] =0 (m~ﬁ+log (n) (ﬁl/’"/gl/Q)). Let O’% =
suprQIE”Tf2 and 033 = suprQ]P’sz. It is easy to see that PTf2 = 1,if f € Q or f € Q and therefore,
0)25 = 03 = 1. Similarly, E [HGTHQ] < og+/log (n) +log (n) ||Fg ||]P’T,T n'/" //n and a similar inequality with
 replaced by Q holds. Therefore, E {HGZ I ~} =E {HGZ ||Q} =0 ( log (n)) Then it follows from Markov’s

inequality that {GZq (- | h) } —{GIq( )}2 =0, (log (n) B + log (n)*/? (ﬁl/’”/ﬁl/Q)). The conclusion
follows from this result and LR, (9 | h) = {GLq (- | h)}2 + O, (log (n) h + log (n)3/2 (ﬁl/r/ﬂl/2)>. [ |
Proof of Theorem 5. Denote Zg, = supeq, G f = |G| 5. Since Fg is also an envelope of Qx4 =

QU (-Q) (—Q = {—f: f €Q}) and the covering number of Q4 is at most twice that of Q, Q4 is also
VC-type with respect to Fq. By standard calculus calculations (see, e.g., the proof of Chernozhukov et al.,
2014b, Corollary 5.1) and Chernozhukov et al. (2014b, Lemma 2.1), there exists a zero-mean Gaussian
process {GT (f): f € Q4} that is a tight random element in £*° (Q4) and also satisfies E [GT (f) GT (9)] =
Cov [f(T,X),g(T,X)], Vf,g € Q+.> By Giné and Nickl (2015, Theorem 3.7.28), almost surely the sample
paths Q1 > f +— GT (f) are prelinear and therefore, almost surely, Vf € Q, GT (f) + GT (—f) = 0,
and suprcq, GT (f) = HGTHQ. Let I'c (h) == GT (q(- | h)) and therefore, the zero-mean Gaussian process
{I'c (h):h€H} is a tight random element in > (H) and has the covariance structure E [I'; (k) I (W)] =

Covq(T,X | h),q(T,X | h)], V(h,h'") € H2.

= HGTH a By change of variables and
LIE, sup;cqP” 1F1? = supy, B [|q(T,X | ))*| < ™% and similarly sup e P” IFI* < h™L. Also, PTFL <
1/h’/%. By Chernozhukov et al. (2016, Theorem 2.1) with B (f) =0, F = Q4, ¢ =r, K, = log(n), o = 1,

ITightness of {GT :feN is equivalent to the condition that 9 endowed with the intrinsic pseudo metric —
g + q p g

1/2
IIf— 9||]PT,2 = (]P’T (f - g)2) is totally bounded and almost surely the sample paths f + G7T (f) are uniformly continuous

with respect to the intrinsic pseudo metric. By Kosorok (2007, Lemmas 7.2 and 7.4), {GT (f):fe Di} is also separable as a
stochastic process.
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b< k™% and ~v = log (n)*l7 there exists Zgi =y suprDiGT (f) = ||GT||Q which satisfies Zg, — Zgi =

)

Op (vn), where “=,4" is understood as being equal in distribution and v, = {log (n) (log (n) n)l/r} /nl/? +
log (n) /n!/%. By Dudley’s entropy integral bound (Giné and Nickl, 2015, Theorem 2.3.7), Chen and Kato
(2020, Lemma A.2) and standard calculus calculations (see, e.g., calculations in the proof of Chernozhukov

et al., 2014b, Corollary 5.1),

plema) s [ s (3 (52 ) o
< (UQ V12 HFQHPTQ) Viog(n) = 0 («/log (n)) . (S105)

By Lemma 11, sup, ey LR, (¥ | h) = HG%H;—I—OP <log (n) h + log (n)*/? (ﬁl/’"/ﬂl/z)). By (S105) and the fact

that E {HG%HQ} =0 ( log (n)), we have 7 — Zéi =0, (\/log (n)vn) Therefore, sup,,cy LR, (U | h) =
Zgi + 0, ( log (n)v, + log (n) E). By Dudley (2002, Theorem 9.2.2) and sup,cyLRy (0| h) — Zéi =

Op (log (n)_l), there exists a null sequence &, | 0 such that Pr [ suppecg LRy (U | h) — Zéi‘ > e, /log (n)| <
e, and by the fact that (a — b)2 < ‘aQ — b2’ Ya,b >0,
Pr { \/SuthHLRp (9| h) — Za, | > /en/log (n)} < én. (S106)

It is easy to check that for random variables (V, W) and constants r1,79,¢ > 0 such that Pr[|V — W| > rq] <

T2,

[Pr[V <t] —Pr[W <t]| <Pr[|[W —t| <ri] +ra. (S107)

Then, by (S106) and (S107),

Pr [supheHLRp (Wh) <z, (E/ﬁ)ﬂ —Pr [Zgi <zi_, (E/ﬁ)ﬂ ’

< Pr[|Za, — =1 (b/h)| < Ve log ()] +2, (S108)

Since Zgi =y HGTHQ and {GT (f): f € Q} is a centered Gaussian process with E [GT (f)z} =1, Vf, by

using the Gaussian anti-concentration inequality (Chernozhukov et al., 2014a, Corollary 2.1) and (S105),

|

Za, =21+ (W/)| < Ve log ()] < Veallog (n) (B [|G7]l] +1) = O (/2w (8109)
It then follows from (S108) and (S109) that

v |LR, (0 | h) < 21, (R/h)” ,Vh € H] =Pr[|[Ig|y < z1-r (h/R)] +0(1).
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Let N be an N (0,1) random variable that is independent of {I'; (h):h € H}. Let I'g(h) = I'g(h)+

2. {fg(h):hEH} is a

E[g(T,X | h)] - N. By change of variables, sup,cy|E[¢(T,X | h)]] = O (h
zero-mean Gaussian process which satisfies Hf GHH = Hf GHH + 0, (E /2> and has the covariance struc-
ture E [fa (h) I'e (h’)] = E[¢(T,X | h)q(T,X | h')], ¥(h,h') € H2. By LIE and change of variables,
Blg(T,X [ h)q(T.X | W) = AIR [ Kyt (2) Ky (BJR) 2) d2 /2. Let I (s) = (s - b, 5 € [1, /B
Then it is easy to see that the zero-mean Gaussian process {F c(s):se [1, h/ h] } has a covariance structure
given by (20) in the main text and Il 7, = HfGHH. By Dudley (2002, Theorem 9.2.2) and HfGHH
7ol ~cl] > 2oy e
6| <210 (B/B)] = Pr[||T6]ly < 21+ (A/B)] = 0(1). By the
. Pr [ ‘FGHH <z, (E/@)} = 1— 7. It then follows that

| Telly = o (log (n)_1/2>, there exists a sequence &, J. 0 such that Pr {

&n. By similar arguments, we have Pr [

definition of 21—, (h/h) and HFG“[LE/E] - HfG

Pr[LRp(zﬂh)§z1_7(ﬁ/ﬁ)2,VheH] —1-7+0(1). n

S6 Proof of Theorem 6

We write 6 = O} (an) for some bounded sequence a,, if there exists some positive constants ¢ > 0 such that
Pr|d] > c-a,] =0 <log (n)/ (nh)3/2>. It is straightforward to check that if 6, = Oy (a,,) and 02 = Oy (by),
then 0162 = O (anby,) and 61 + 62 = O (an + by), ie., the algebra of the O, notations carry over to O

notations. We say that an event occurs wp* if its probability is 1 — O (log (n) / (nh)* 2).

Lemma 12. Let V denote a random variable and {Vi, ...,V } are i.i.d. copies of V. Assume that nh — co.
Suppose that K is a symmetric continuous PDF supported on [—1,1]. Let B denote a neighborhood of 0. The
following results hold for all (s, k) € {—,+} x N.

(a) If gy is bounded on B\ {0}, (nh)~ > W, s Vil =03 (1);

(b) If gv> is bounded on B\ {0},

1 log (n)
k k *
— E V| = ;
LS pwti - [y <o (15,
(¢) If if gy jsr is bounded on B\ {0}, max; [Wps: Vil = O ((nh)l/T>.
Proof of Lemma 12. For Part (a), let ¢ > 0 be an arbitrary positive constant,

<Pr &

1
s A

1
Pr hZ| wk Vil >E[h\W§;SV@ +c
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3

5/ 1 1 1
)b e[ vt - [ ]

=0 ((nh)fgﬂ) ,

) (L gl(L L i
s (3or | (it - [ ]

where the second inequality follows from Markov’s inequality and Rosenthal’s inequality and the equality
follows from change of variables and Loéve’s ¢, inequality. The conclusion follows from the above results and

E[n? |W1’;SV|] = O (1), which follows from change of variables.

For Part (b), let r,, .= \/(nh) /log (n), V; = V;1(|V;| > r,) and V, == V;1 (|Vi| < r,,). Then we write

\/72 pqvv E[Wk V]) W + W, where
w = \ﬁ Z p,s,zV _E [Wk V)
W = \/72 r Vi —E[WEV]).

Let 0‘2,[, = Var [h_l/ZWﬁSK]. By a2m < E [h_lVVZ?;’;KZ}, LIE and change of variables, 0‘2m = O(1).
W]fs vV, —E [WZIZSK} ’ is bounded by an upper bound that is proportional to r,. Let cg > 0 denote an arbi-
trary positive constant. By Bernstein’s inequality (Giné and Nickl, 2015, Theorem 3.1.7 with u = log (n®)
and ¢ < ry,), we have Pr [|E| > (, [2c00%; + 00/3) log (n)} < 2n~%. By ojy, = O (1) and taking ¢y to be
sufficiently large, W = O} ( log (n)) By Markov’s inequality, the fact that v’ < v’ |V/ rn|3 and change of

variables,

Pr|

and therefore, W = O} ( log (n))

E|n W2V E w2k v
W’ Z log (n):| < |: P :| S |: b j| — O log (n)
log (n) Ty - log (n) (nh)®/?

1/r .
Part (c) follows from max; |[W.s;Vi| < ((nh)_1 > |Wp;s7iVi|T) (nh)*" and Part (a). [ |

We keep all notations defined in Section S2.1. We recycle some previous notation and let Xpmc be redefined
by

Xpmc = arginaxz log (1 + AT (Wy,iVi)) .

%

Then we have

Ry (0| h)

2n (670 | h) = e3< (97< | 1) )
. {Z log <1 + (X;")T (Wp’ivi)) = log (1 + (X;C)T (W,,,if/imc)) } :
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The following result is an analogue of Lemma 4. Its proof essentially follows similar arguments.

Amc

=05 (VIog (n) / (nh) )

Lemma 13. Suppose that the assumptions in the statement of Theorem 6 hold. (a)

(b) 5;6:0;( log(n)/(nh)); (c) HX;,nc :0;( Tog (n) / (n )).

Proof of Lemma 13. It follows from Lemma 12(b,c) and Lemma 3(b) that ||V 2| = O} ( log (n) / (n )),
max |WpiZi|| = O3 ((nh)l/ﬁ) and || Wzz7 o — Agzzr || =05 ( log (n) / (nh)) Therefore, mineig (Azz7 5)—
H‘I/ZHmiaXHWp,iZiH - H‘IIZZT,Q _AZZT72H is bounded away from zero wp*. By this result and (S34),
[ Ame|| = O3 ( log (n) / (nh)) and Part (c) follows from similar arguments. Part (a) follows from ||AT¢|| =

0; (Vlog (n) / (nh)) and the fact that Az = (STAYS. ) (0, (A;c)T)T

By [|Ame|| = o;( Tog (1) /(nh)), (S39), the inequality in (S40) and Lemma 13(ab,c), 05 = Uy —
W, AT + O (log (n) / (nh)). By this result, |Ae| = o;( Tog (1) /(nh)), Lemma 3(b) and Lemma

12(b), D€ = y.; + OF ( Tog (1) / (nh)). Similarly, 97 = ¢p ; + OF ( Tog (1) / (nh)). Part (b) follows

from these results and the equality

A B N 09 (vps )
Ine Yoy Ypi  Ypji Ypi \ 97

.
Expanding the right hand sides of (S48) yields
o = ot {1 () () () ()
(6 o)+ 5L
0 = (W H) A 1—(XZ“)T(WM“)+((32”°)T(Wp,iﬁ"‘c))2— <(X$C)T<Wp’@mc><)s;>

f ) 0,5

By Lemma 12(c), Lemma 13(b) and XA/imc = V; + H;9™, max;

D

1 mc
WiV

= 0, ((nh)l/ﬁ) and by this re-
(Xg‘C)T (Wp,ﬁfimc) ‘ — 0z ( /log (n)/ (nh)" 3).

< 1/2 wp*. By \//\;mc = Vi—f—Hi@g‘c, Lemma 12(a) and Lemma 13(b), we

sult, Lemma 13(a) and the Cauchy-Schwarz inequality, max;

(5 (ws7)

5
* —1
= O} (1) and (nh)"" >3, W,

Therefore, max;

3

have (nh) ' W yjme ymell = Oy, (1). By these results and Lemma
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13(a),

By V™ = V; + HyJm and Lemma 12(a,b),

LS () (W) = SR e S ()
a2 (05 (i) = S (w73 s i () )
: , :
w2y Wz, (Vi) ((X;‘;C) ! Hﬁ;‘ﬁ
S () s g ()’ () )

+o; ((10%”))5/2) .

By plugging these results into the right hand side of (S110),

2|
7N
~
>)
<3
0
N———
4
~~
=
=
3
N———
N———
I

—Apy AT+ Ay dTe = —n—lh > WyaVi+ n—lh > WV ((X;“C)T Hi@;“) - nih PIALENY (WX;;C)Q
2w (73) (05 )« S (73
+$ Z W2 Hidge (VIApe) + ﬁ W H &(X;;"C)T Hiﬁ;;w)
—,Tlh Z Wy Hidp© (vaz“)z + (‘I’VZVT,z — Ayt ) AT — (W — Agg) O
(%)
AR = S () (V) + o v () ( () )

2
S a3 (73 5o

A stochastic expansion is an approximation that is a polynomial of centered sample averages and has an

approximation error of desired order of magnitude. We invert (S111) by using (S47) and get higher-order
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approximations for (Ag‘c,ﬂg‘c). Plugging these higher-order approximations back to the right hand side

f (S111), replacing all sample averages except (nh)_1 > ; WpiVi which is approximately centered since
|Av|| = O (hP"™) with the sums of their population means and their centered versions and dropping

terms that are Oy ((1og (n) /nh)Q), we get a cubic stochastic expansion of (Ag‘c,ﬁg‘c). The same alge-

braic calculations have been done in Chen and Cui (2007) so that we use them directly here. Let oK™ :=

kl:m klm

k. . kil . Kim .
Aywvoymym, ¥ = Agew, ¥ = Av<k>v<'>H<m>,3a v o= AH(k)HU),za A = ‘I’v<k)v<'>v<m>,3 - and

okl = \I/V(k)H(nA’Q—’yk:I. By Lemma 12(b), Uy ¢y my )y 4—ak|m", Wv(k)v(\)H(m)’g_'yklzm and \I/H(k)H(I)Q—'Yk;l
are all O*( log (n) / (nh)) We can show that (x\g‘c,ﬁg‘c) admit a cubic stochastic expansions with

leading terms that are polynomials of (Ak AR AKIm Ok Ck') with coefficients given by (a aklm ak'm“)

)

(fykgyk:','yk':m,yk?') and . Formally, their expressions are the same as those given in Chen and Cui (2007)

(see Equation (2.6) therein).

By fifth-order Taylor expansion, V;" = V; + H, <1§‘m°, Lemma 12(a) and Lemma 13(a,b) and the fact that

(XE‘C)T ( , ZV’“C) =0, (\/W/ (nh)" ) we have

e () = 205 () (65 () <33 () )

z4 oz (n))7/2 i
_Z<( ) ( pzvmc>) +0, <(l(il(z)§32 >

By Vme =V + Hzﬁg“c, Lemma 12(a) and Lemma 13(a,b),

= R os (n))?/2
S () () -2 () s ()

%

max;

Therefore,

2n - 47 (T5< | h) =23 Wy VT Ae 423 W ((X;;‘C) ! H,-,é;,“) =W (TR i
sz () m) Sy () () i) + 2 o (v
vay g, (v’ ((x;;c) i Hﬂ;;;c) S (V) o (ﬁi g;g;j”) C(s112)

By the same steps and plugging stochastic expansions of (Ag‘c, ﬂg‘c) into the right hand side of (S112), we

have a stochastic expansion of 2n - £7'¢ (1/9\;)“ | h) so that 2n - £7' (19;“ | h) =1+ Oy (log (71)5/2 / (nh)3/2),

where the leading term Uis a quartic polynomial of centered sample averages (Ak,Ak',Ak'm, Ck, Ck"). The
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expression of s formally the same as those given in Chen and Cui (2007, Equation (2.8)).

Similarly, by expanding the right hand side of

we get

<\ T PR

Then by Lemma 12(a,c) and Lemma 13(c), the remainder on the right hand side of the above equation is
O, ((log (n)/ (nh))2> By using the same approach, we get a cubic stochastic expansion of szc and a quartic
stochastic expansion of 2np (J | k) so that 2n - £ (9 | h) = (+ Oy (log (71)5/2 / (nh)3/2). The stochastic
expansions are polynomials of (Ak,Ak', Ak'm). The expression of (s formally the same as Chen and Cui

(2007, Equation (2.5)). Let LR := { — { so that LR, (9 | h) = LR + O% (log (n)*/? ] (nh)*/ 2).

Lemma 14. Suppose that the assumptions in the statement of Theorem 6 hold. Then,
Pr[LR < o] = Fyg (2) — 40" (n.h) afye () + O (079),
where

11
cg;re (n7 h) — (nh) (a1)2 + (nh) 1 {2 (akkll - a1+a 1+al+b 1+b) o (aklmaklm o a1+a 1+b 1+ca1+a 1+b 1+c)}

Wl

e o BOIAUL TOROUE Lyt G Al + (o) 8
n nh (nh)3/2 :

Proof of Lemma 14. A decomposition LR = (nh) (R% + 2R Ry 4 2R R3 + R%) can be derived. Ry is
a homogeneous k-th order polynomial of (Ak,Ak',Ak'm,Ck,Ck:') so that R; = (@) ( log (n) / (”h))’ Ry =
Oy, (log (n) / (nh)) and Rs = Oy ((log (n)/ (nh))3/2). The expressions of (Rl, Ro, Rg) are the same as those
given in Chen and Cui (2007). Algebraic calculations in Chen and Cui (2007) show that by setting R, = A®,

R2 — _% . A11A1 _ Al 1+aA1+a + % . alllAlAl —|—Q . Cl+aA1+a

+allltagl gl+a | {al l+altb (). ,Yl+a:1+b} AHE’AHb, (S113)
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and R3 to be given by the formula in Chen and Cui (2007), we have LR = nh (Rf + 2R Ry + 2R Ry + R%)
In (S113), by (S46) and (S47), yital+bgl+a gl+b — Ol+a gl+a —
Let ok == Ay and Ak = Ak ok, By replacing AX with Ak + o, we have Ry = Ryp + RH, where

Rio = a! and Ry == Al. Similarly, we replace A with A+ a* to decompose Ry = Ras + Ro1 + Ro so that

Ry is a homogeneous (2 — k) —th order polynomial of o, ..., ad=2:
Ry = _% CAMQL _ plltaglta g CaMALGL 4 gltita (alﬁl+a _‘_al—&-ajl)
Lolltalth (aHa/iHb + a1+b/011+a) , (S114)

Ry is defined by the right hand side of (S113) with A* replaced by A and Rog = Ry — Roy — Ry =
O (||AV||2) Let Ry :== }?104—]?20, Ry = Ry1+ Ry and Ry := Royy. We decompose R3 = Rss+ Rsa+ Rs1+ Rso
in a similar manner and let Rs == Rs3. Rs is given by the formula of Ry with A* replaced by A*. Then, let
R := Ry + Ry + R3. By Lemma 12(b), Ry + Ry + R3 = Ry + R + Oy, (|Av||log (n) / (nh)) and therefore,
LR = (nh) (Ro + R)* + O} (vP).

Denote K, () == 1(t>0)Kpy (£) — 1(t < 0)Kp (£). Let Uy == (M, 2Z7)", i (Uy) = (1,U7) ",
T T
o (Up) = (1,UOT, (Ugw)T) U3 (Up) = (1, Ul (U2 (U(??’)T) and

p( )ll (UO)

h

I
a3 3
EONSCREN

—~

S = ==
oy
S

—~

~—
~
w
—~
S
~

Let d; denote the dimension of L. It is clear that vnh - R :== h, (T), where T := (nh)fl/2 > (Li —E[L])
and h,, is a cubic polynomial. E.g.,
Vih - A' = el 5 STALE, ((nh)l/ 2N (WU —E [WPU])>

AZAG, () (WU - BIWU))

AE’A(;%JTQAG

It can be shown that other terms on the right hand side of (S114) can also be written as linear functions of
7. Similarly, vnh - Ry and v/nh - Rg are homogenous quadratic and cubic polynomials of 7.

Let x; (V') denote the j-th cumulant of a random variable V. We follow arguments in the proof of Calonico
et al. (2022, Theorem S.1) and apply Skovgaard (1986, Theorem 3.4) with s = 4 to S,, :== B~Y/2Y where

B := Var[L] /h. For any t € R% with ||t|| = 1, by change of variables and calculation of the moments (see,
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e.g., DiCiccio et al., 1988, Page 12), g (17S,) = B[(£78,)°] = 0 ((0h)™/%), 54 (£75,) =B [(t784)"] -

2
3 (E [(ﬂsn)ﬂ) -0 ((nh)_l) and ps. (t) = max{‘mg (£7S,)] /3!, /Tra (thn)\/zu} -0 ((nh)_l/z),
uniformly in ¢. Condition I and II of Skovgaard (1986, Theorem 3.4) are satisfied by taking a, () < vnh
and ¢, = (nh)73/ %, Let Wy (t) = E[exp (it" V)] denote the characteristic function of a random vector V,

where i :=+/—1. Since K, is supported on [—1, 1], by change of variables,

Up, (t1,to,t3) —1—PI‘[ h<X<h]

“h / /exp (T () (y) + K2 (0) s () + 11K (0) 15 (1)) fux (u | h) Fxe (o) dydo.

Then, by triangle inequality and mean value expansion,

sup |Pr, (t1,t2,t3)] <1 —Pr[—h < X < h]
[[(t1,t2,t3)||>€

+h~so{|”sut)|> //exp (1 (0) 1 (y) + 52 (0) 1 (9) + L1 K3 (0) 15 (1)) Sux (9] 07) dydo
//exp (71, (0) b (y) + £ K2 (0) I () + £ K2 (0) Iy <)))onX(y|o>dydv+0<h>},
I(t1, t2 t's)\|>€
(S115)

where fy,x (y | 0%) = limgyo fu,x (v | ) and fy,x (y|07) = limaofu,x (v | 2). Let U denote the
support of Up. Let By = K, (V)i (4), Ex = KZ(V)I2(A), and Es = K3(V)I3(A), where (V,A)
has the joint density (v,u) — 1(0<wv <1) fyx (u|0%). Under Assumption 6, the functions (v,u) —
(LKp (0) 1] (u),K2 ()13 (u),K3(v)lg (u)) are linearly independent on (0,1) x ¢ . By Bhattacharya (1977,

Lemma 1.4), Ve > 0, Jc. > 0 such that

sup
[[(t1,t2,t3)]|>e

/ / exp (i (H Ky (0) I () + L1 K2 (0) b () + 1] K2 (0) Is (9))) Furopx (3| 0*) dydlw

=  swp  |Efexp(i(t] By + 1] By + 3 B3))]| < 1—c..
[(t1,t2,t3)]|>e

A similar result holds for the term on the third line of (S115). Then by these results, Pr[—h < X < h| =
2h (¢ + O (h)) and (S115), Ve > 0, 3e. > 0 such that supjys. [¥r ()] < 1 — cch, for all sufficiently small h.
It follows from this result and arguments in the proof of Calonico et al. (2022, Theorem S.1) that V§ > 0,
Jes > 0 such that sup, s mn [¥s, ()] < (1 - csh)"™ when n is sufficiently large. It is also easy to see that
for V6 > 0, (1 —csh)" < ei’/2+2, when n is sufficiently large. Therefore, Condition IIT” of Skovgaard (1986,

Theorem 3.4 and Remark 3.5) is satisfied with o« = 1. Verification of Condition IV of Skovgaard (1986,
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Theorem 3.4) follows from essentially the same calculations and arguments in the proof of Calonico et al.
(2022, Theorem S.1). Now all conditions for Skovgaard (1986, Theorem 3.4) are verified. It shows that S,
admits a valid Edgeworth expansion, i.e., conditions (3.1), (3.2) and (3.3) of Skovgaard (1981) are satisfied
with U, = Sy, s =4, Bsn = (nh)_1 and the Edgeworth expansion holds uniformly over the class of all convex
sets in R%. Note that we can write vnh - R = h,, (BY/2S,,). Then we apply Skovgaard (1981) to show that
the Edgeworth expansion is preserved by smooth transformations. Condition (3.4) of Skovgaard (1981) is

satisfied with g, taken to be z + h,, (B'/2z) whose the gradient at zero Vg, (0) is given by

.
A&y
7 70;—(@4-2) + O ([[Av]])

TA—1L
AcApyr JAc

Vgn (0) = B1/2

by the chain rule. Then we apply Skovgaard (1981, Theorem 3.2) to f, (S,) == B, g, (S,), where B2 =
Vga (0)" Vga (0). Then,

UuUT 2

TA—1
AcApyT 2 Ac

g - 2eBuina O U Bt a2 )~ 140180l

Condition I of Skovgaard (1981, Assumption 3.1) is satisfied with p = 4. Condition IT of Skovgaard (1981,
Assumption 3.1) is satisfied with A\, = O ((nh)_l/Q) so that \271 = o ((nh)_1>. Now all conditions for
Skovgaard (1981, Theorem 3.2) are verified. It is left to compute the approximate cumulants.

Then we calculate the formal cumulants of f, (S,) = B;'v/nh - R. In the calculations, we repeatedly
use formulae for moments of products of sample averages (e.g., DiCiccio et al., 1988, Page 12) and Lemma
3(a,b). By definition, E [R;] = 0. We calculate E[Rs], let the remainder term absorb the terms that involve
o, ..., 0% %2 and get E[Ry] = (nh) ™' &1 +0 (| Ay /n) where &, := —a''1/6. By formulae for third moments
and Lemma 3(a), E[R3] = O ((nh)_g). Therefore, £ (m R) =Rin+0O ((nh)_l/2 Ayl b+ (nh)_3/2>
with Ry, = (nh)_l/2 %1 . For the second cumulant, by definition, k2 (R) = E [R?] — (E [R])* and by formulac

for fifth and sixth moments and Lemma 3(a),
E[RY] =E[R?] +2-E[RiRy] +2- B[R Rs] + E[R2] + O ((nh)*”) .
By Ri = Ri1 + Ra1 and calculation,
B[R] = B[R] +2E[Rafu]+0 (0 av))

E[RiR] +E[RiRs] = E {JénRz} +E {RMRS} +0 ((”h)i2 ||AU||) :
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Then by calculation, E [R%l] — (nh)"' +0 (||AUH2 /n) and 2-E [Rglén] = (nh) ™ Form+ O (\|AU||2 /n),
where F21, = o'a'/3. Then, E[R}] = (nh) ™' (1 + Farm) + O ((nh)_1 HAU||2). Calculation of 2 -
E {RHRQ} +2-E [RHR;),} + E [R3] follows from replication of calculations in Chen and Cui (2007) and

we can directly use the results therein. By calculations in Chen and Cui (2007), we have
2.E [RHRQ} 1 2.E {RHR?,} +E[RZ] = (nh) 2Ry + 0O ((nh)_2 1Au| h+ (nh)_3) ,

where

1 1
. §a1111 4+ llltalta g01111 111 _ ll14a 1l114a _  1l4altb 114altb

1
_ (akkll _gltalta 1+b1+b) -
2

wl—~ 2

(aklmaklm o a1+a 1+b 1+ca1+a 1+b 1+c)

and the O ((nh)_2 Ay h+ (nh)_g) remainder collects terms that depend on a?, ..., a%+2 and higher-order

terms from the fourth moment calculation. Therefore,

ke (Vith - R) = i + O (| Au]* + (k)™ [ Au | + (nh) ).

where Ko, = 1+ Ra1,n + Roz,n and Rogp = (nh)f1 (Rg — Fo%)

By definition, x5 (R) = E [R®] —3-E [R]E [R2] +2 (E [R])® and by B[R] = E[Ry]+ 0 ((nh)_2), E[R,] =
O () ™"), B[R] = E[R3]+0 ((nh)*) and E [R*] = E[R{] +3-E [RaR3] + O ((nh) "), which follows

from formulae for higher moments, we have
ks (R) = B[R] = 3 (E [R2R3] — E[Ro] B [R3]) + O (nh) ) .

It is easy to check that E [R}] = [ ] ( h)~? ||AU||), E[R:R}] =E [Rgé%l} +0 ((nh)_2 ||AU||)
By these results and E [R}] = [ 3 } +0 (( h)~ ||AUH)

k3 (R) = E {Ri’l

—

~3(B[RaB2] ~BRIB[RE]) +0 ()™ + ) * A0 ])

Calculation and expansion of E |R3,| =3 (E |R.R%,| — E[R,]E |R2 follow from replication of calculations
11 11 11

in Chen and Cui (2007). E.g., by calculation using formulae for moments (DiCiccio et al., 1988),

E [Ri’l} =n2 (E [(hlwpvﬂ) - a1)3]> =n2E {(hlwpvmﬂ +0 ((nh)*2 [N h) ,
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and the O ((nh)_2 AUl h) remainder collects all terms in the expansion of the third moment which depend
on ol,...,a%*2 Similarly, we calculate E {RQR%} — E[R2] E [R%l} We note that coefficients of terms of
order (nh) 2 in E [R:{’l} -3 (E [RQR%1:| —E[R]E [R%D are formally the same as those of the leading terms
in the calculation of the formal third cumulant in Chen and Cui (2007). Calculations in Chen and Cui (2007)

show that the sum of these coefficients are exactly zero and therefore, the leading term vanishes so that

K3 (\/% R) =0 (”A\/nih” + (nh)‘3/2> . (S116)

By (S116), the fact that
ks (R) =E[R'] =3 (E[R?])’ —4-E[R]xs (R) + 2 (E[R])",

E[R] =0 ((nh)_l), R = Ry1 4 Ro1 + Ry + R3 and standard calculations,

pa(R) = B[R] =3 (B [82))" + 0 ((nh) | Au] + (nh) ") = {E 7| -3(B [R%D?}
+4{B Rk |~ 3B [Rein | B[R} + 6 {E [R3R2| - B[RS B[ R3]}

4 {E [RQRi’l} _3.E {RQRM} E {Rfl} } +0 ((nh)*3 lAu] + (nh)*“) . (S117)

And by standard calculations,

E [1—?‘{1} ~3 (E [R%DQ =n3 (E {(hlwpv“) - alﬂ —3 (E {(hlw,,v(l) - a1)2D2>
— 3 (E {(h—lwpv(l))j ~3 (E [(h—lwpv(l))QD) +0 ((nh)*” 1Ay || h) ,

and the O ((nh)_3 AU h) remainder collects all terms that depend on al,...,a%*2. Similarly, we also
calculate E [RQR%] “3E {RQRH} E {Rfl} E {R%R‘fl} ~E[R3E [Rfl} and E [RQR%} “3E [RQRH} E [R%l}
on the right hand side of the second equality in (S117), ignore small-order terms that depend on o, ..., a%=+2
and take the sum of the leading terms. We do not need to rework on the calculations since they are formally
the same as those done in Chen and Cui (2007). Calculations in Chen and Cui (2007) show that the sum
of the leading terms on the right hand side of (S117) is exactly zero so that it follows from this result and
(S117) that ky4 (m . R) =0 ((nh)_l IAu] + (nh)_2>. By previous calculations and B, =1+ O (|| Ay]),
we get the approximate cumulants for f,, (S,): k1 (fn (Sn)) = By &1, + O ((nh)_l/2 [Au | b+ (nh)_?’/Q)7

Fo (Fn (Sn)) = B 2o + O (11801 + (k) " 1801+ () ), ks (Fa (Sn)) = O (180 /Vk + (nk) =)
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and 1 (fu (S)) = O ()~ A0 ]| + (nh) 2).

Let ¢ (- | p, 0?) denote the PDF of N (u,0?). By applying Skovgaard (1981, Theorem 3.2) to f, (Sn) =
B, YWnh-R,

“1- —a- Ay —3/2
Pr|(nh) (Ry+ R)* <z z/ ¢ (t| B, Ryn, By %Fon dt+0(+(nh) ,
[ ’ } |t+(v/nh-Ro)/Bn |<v/z/ B (t ' ) vnh

(S118)
uniformly in z > 0. By using the recurrence properties of non-central x? (Cohen, 1988) and mean value
expansion, we have (0/0\) F' (x| \)[\_5x = —2f,2 (¥) + O (A). By this result, B2 =1+ O (||Ay]), change of

variables and mean value expansion,

/ ¢ (t| By Rin, By *Fon) dt :/
|t+(vnh-Ro)/Bn|<v/Z/Bn [tI<y/z/F2,n
2

T ‘ (\/ nh . RO + Fél’n>

R2.n '%2,71

. 2
=F =Fe (ar)fxfxf (x) ((\/ nh - Rip + I%Ln) + Ro1pm + /N-iggm) +0 (VP).

(S119)

By (S118) and (S119),

Pr | (nh) (Ro + R)? < x] = Fy (z) - {(nh) R2, + 2Vnh - RioRym + Fatn + (nh) " RQ} 2fye (z) + O (U8°).
(S120)

It is easy to see that 2v/nh - R1ol~i1,n + Ro1,n = 0.

It is easily seen that the result (S118) with the weak inequality replaced by a strict inequality still holds
(see Skovgaard, 1981, Theorem 3.2). By LR = (nh) (Ro + R)* + O, (vpr®) and the fact (S107),

Pr[LR < 2] — Pr |(nh) (Ro + R)* < m} ‘ < Pr H(nh) (Ro+ R)* — x‘ < clvfl'e} + e ((I:Li)(‘?/)2> =0 (VP°),
(S121)

where the equality follows from (S118) and boundedness of ¢ (- | R1,n,R2,n). The conclusion follows from

(S120) and (S121). |

Proof of Theorem 6. By (S46) and (547),

(kI (mn)
kkll -1 -1
« = (AUUT,2> (AUUT,2> AU(k)U(DU(m)U(n)A

(kD)
- <Al_11UT,2> tr (AE%JT,QAUWU(')UUTA)
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1+al+al+bl+b 1 (ab) 1 (cd)
a a - -
@ - (AZZT 2) (AZZT 2> Azwzmzo 2@ 4

_ (ab) _
= (Azlzw) tr (Azlzf,QAZ<a>z<b>22T,4)
and

)(mm') A

dm_kim 0 &) N

«Q (6% = AU(k)U(I)U(m),3 (AUUT,Q) (AUUT,Z) (AUUT,Z
—1 (k) -1 —1

(AUUT,2) tr (AUUT’QAUO‘)UUT,3AUUT’2AU(I)UUT,3>

aa') (bb') (cc’)
1+al4+bl+c, 1+al+bl4c __ o -1 ( -1 1
@ @ = Azezeizes (AZZT,z) (AZZT,Q) (AZZT,2) A

vy y) 3

7))z Z(<) 3
-1 (ab) -1 1
(AZZTJ) tr (AZZTQAZ(H)ZZT,SAZZT QAZ(MZZT;&) .

It is easy to see that in Lemma 3(a), if gy is Lipschitz continuous, the remainder term is O (h).

By this result, AU(k)U(\)UUT,4 = wg’4'l/)U(k)U(l)UUT7i + O(h), AU(k)UUT,E} = wg’3'l/)U(k)UUT,—i- + O(h) and

1 -1 ..
AUUT72 = (wg’%uw,i) + O (h). Similarly, AZ<a>Z<b>ZZT,4 = WgAwZ(a)Z(b)ZZT,i + O (h), AZmZZT,?) =

w7 277 + + O (h) and A;ZT,Q = (w2’2¢ZZT)i)—1 + O (h). By these results, we have
lakkll _ laklmaklm — yiron
2 3 P
1 1
5O[1+a 14+al+bl+4+b §O[H»a 1+b 1+ca1+a 1+b1l4c — a//pi + 9] (h) ] (8122)

By m = v + O (h) which follows from Lemma 3(a) with Lipschitz continuity, (S52) and (S54),

2 2
oy (Badghoobu)  (Bu=Buz a8y ,02) a2 o
ALAG T 406 Anzo = Ayzr ol 50 JAze e '

It is clear that in Lemma 3(b), the remainder term is O (hp“”’) if mgf 1) is Holder continuous with exponent
b. Then, by this result, A; = ¢p 1 Byh*T! + O (RPT1HD) and Ag o = 1/)%”7/,, + O (h). Then, by this result

and Lemma 3(a,b),
(#yeto)’

12 _
(nh) (a')” = (nh) - 7

+ O (23 |

The first conclusion follows from this result, (S122) and Lemma 14.

It follows from the same arguments used to show Lemma 3(b) that E [h™'W,11,5V] = ¢y + O (RPT11H)
if mgf +1 i Holder continuous with exponent h. Then, the second conclusion follows from Lemma 14 with p
replaced by p+ 1 and similar arguments. In this case, we have HE [h’1Wp+1U} || =0 (hp““’) and the bias

part is now O (nh?P3+20), [ |

561



S7 Proof of Theorem 7

Define
Y, — 6D
. ~ D; = 0254,
Ui (6o, 01) = 1 , Goyi = and Gy, =
Od.+1 D; -1q,
Z; — 01D

Then, we have (9/900) U; (60,01) = —Go,; and (3/907) U; (60,61) = —G1;. Also let U; = U; (9,6 - 1,,).
We recycle some previous notations. (Aak, VA k, Ak, Uk, Aa, U4) are defined by the same formulae with p

replaced by p 4+ 1. Consider the singular value decomposition

—1/2 =
STALdr , (w0g,) T =
04,41

—1/2 ST - A 1/2
of AUUQ2 (—Ag,), where STS =1y 4, T=1and A := AEOAUU/T ,A¢,. Then we have

STAU;}/—E 2 ( Aéo)

=€d,+2,1- (8123)

T —-1/2 ~
AL AL A

Let Q== A~1, V; (6, 6,) == sTA-gf Ui (00,601, Vi = Vi (0,0 1,), Ho = STA[;;/E,Z (—éo,i) and Hy,; ==

STaz2, (—Gl) Then we have
P (0] R) = sup Zlog (1 +AT (Wpﬂm (e,odz))) .
Let AT, be defined by
Ame o argma Zlog (1 FAT ( iV (5;;;1, odz))) .
Let A", be redefined by
Ame = argmax Z log (1 FAT (WPH,Z-VZ- (¥, odz))) .

Then, the likelihood ratio is given by

LRpy1 (0] h) =2 {Zlog (1 + ( p+1>T (Wp+lz i (9,0, )) ZIOg (1 - ( p+1) (Wpﬂ,iffi (5;"i1,0d2))>}.
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Let (zzlk, AW Gk GM gkim Ak) be defined by the same formulae as (Ak, AM ok M gkim Ak) with V re-
placed by V. The ranges of the following indices are fixed: a,b,c = 1,2, ...,d,. Let 7 AHam) and 7K =

A"’/(k)Hfla)72. Let C*@ = \Pgiku) — —A (Ak7 Ak|7 Ak, Ck’a7 Ck'l’a) are

all O (x/log (n) - ln). Let Vp,; = Vi (9,04.), Af = ‘IJVO(k> and Af = \Ilvo(k)va(|>72 — &M, Tt is easy to see that

AH(ka) and Ck La =U

Vo FI 2 Vo FID 2

Al = A, (R 7)o@

A = A, (CKhe R 6 (k14 0 (12) (S124)

.
Denote N; := ( 1 N ) . Let

AN = (A . AN,QANT,2>_1 ( N A]\J72AN72)
= _ZN2TN 2 . ~N,
NNT 2 N, Ay 5
ox = Anzg— AMNT,QA;V}/TQAMN,Z

and ¥ = o3 /A, By writing Agpr, and Ay 5 as block matrices and inverting, (S45) and (S54) hold

with (G’, U, Z) replaced by (éo, U, ]\7) and (S37) holds with Z replaced by N. By these results,

< A2 _ AN
M = Apxm 2 A5y N (M ~ A, ) - N (N - A, ) : (S125)
By (S45) and (S37), AT AU;]T Ag, = = —43 /¥~ By this result, (S54) and (S123),
T
~las(a) _ AG AUUT 2A 0 _ 56
yhesle) = St .y (S126)
A Baor, zAG‘o VIN
Denote Q = AUUT 27AU(1]T QAGO (AT AL_/UT QAGO) AT AUtle ,- Then (S46) holds with (Q, Z) replaced

v (Q, N). (S47) holds with (V, H,U, Q) replaced by (V,Ho, 0, Q)
It is easy to check that the conclusion of Lemma 13 still holds for (A;}‘il, U, )\g‘il) (S111) and (S112)
hold for (Agﬁl,ﬁgil) with (V;, H;) replaced by (VOHO) Let <R1,R8) be defined by the formulae of
(Rl, Rg) in the proof of Lemma 14 with V; replaced by Vp ;: R‘f = A} and

Rg — _% . A(l)lAé _ A(1)1+8A(1)+8 + 1 . ~111A Al ~11 1+aA A1+a ~1 1+a 1+bA(1)+aA(1)+b.

. N2
By arguments as in the proof of Lemma 14, LR, (¥ | h) = (nh) (RO + RO) + 05 (log (n)? l%) By using

these results and replacing A* with Ax + %, we decompose R? = RY, 4+ RY,, where R?, = A' + §(®)[,Ch
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and Ry, == @' 4+4526(®)1,. Similarly, by using (S124), we have Ry = RS, + R, + RY, + 0y, (log (n)13), where
- 1
Rg() _ ,_?1 1 a 1 b5 a)5 b)ZZ _ ( 1:14a,a + ,?1+a 1, a) ~1+a,b6(a)6(b)li + g . &111,7}/1@5/17175((1)5(17)1%

_’_&ll 1+a;y1,a;71+a,b§(a)§(b) l721 + O~(1 1+a 1+b,71+a,a,?1+b,b5(a)6(1))[3} + 9] (li) ,

RO _ All 1, ag a)l 1 1, aA 5((1)1 Al 1+a,_?1+a,a5(a)ln
. (,~>/1:1+a ,a +,.)/1+a 1, a) A1+a6(a I, + :23 ~111j1,~}/1,a5(a)ln + dll 1+aj1,~y1+a,a6(a)ln

gt 1+a,§/1,aAl+a(5(a)ln 2. gl il flrazitbag(a) 0} (log (n) 12)

and
1

Ry, = _% CAMAL _ fl1+a g1+4a L. G ALAL gt 1+a 41 jl+a L ogiita L+b fl+4a f1+b

Let R == R, + Ry, RY == R, + RY,, RS := RY, and R° := R} + RY so that we have LR, (¢ | h) =
(nh) (RY + R0)2 + O} (Inh). Denote &g’ := 51*3%b. Then, by (S126), we have
7x6) 12

Rebe@ 12 = ( (S127)

N
By tedious algebra and Lemma 3(b),

(R)® = @351, + kg6 @502 4 kbes@ 55O 1o (13)

where

2
—abc . 111 l,ax1,bx1,c ~1114ax1l,azx 1+a b 1,c ~1 l14+al+bxl+4a,ax1+bbx1,c
Rit o= —gra Y424 o +2- S e

9. ”?Ll,a’?l’b’?l’C —9. (;5/1:1-‘1-3 ,a + ,yl+a 1, (1) ,?l—i-a,b,?l,c_

Let k = a''1314/3 and Ra, = 1+ 7$6()1,. By calculation using arguments in the proof of Lemma
14, we have k1 (\/ R0> =FRin+o0(ln), k2 (\/ RO) = Ron +0(ln) and K3 (\/nh . R0> =o(ly), where
Rin = —(nh)” 1/2 a''/6 . Then, 2v/nh - R3R1, = —k36(@1, + O (12). By arguments used to show (S118)

;M

and (S119) (i.e., Skovgaard, 1981 with s =p =q =3, fsn =, and A\, = O (1)),

N2
Pr {(nh) (R8+R0)2 Sx} _ ~x | (M'R8+/€1,n>

R2.n "%2,n

+o(ly). (S128)
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Then by Taylor expansion,

F

e (VR Byt R) :F<

%Q,n ’%Z,n

| (nh) ka5t 5b>z;i> + {(nh) mgPes (55012

HZn

+ (nh) 31316 — (nh) PSSV - kg3 — o) L FO (| (nh) g8 0O ) 1 + 0 (). (S129)

Let f(-|¢) denote the x2 (1) PDF. By using the recurrence properties of non-central x? (Cohen, 1988),
—xf(x|t)=20-F® (x]0)+ (04 1) FO (2] ). By these results, (S127) and Taylor expansion,

F (x | (nh) 7§65 b>12> = P (2] (k) RgP5D6O2) - af (] (nh) 6@ (1 - 1) +0(2)

e Ka,n
- F (9: | (nh) Rgb(s(a)(s@zg)
2 ((nh) Rgbé(“)é(b)li> 2 (x | (nh) Rgb(s(a)é(b)lz) (:%56(@1”)

+ ((nh) Rab§@5O)2 | 1) FO (m | (nh) 72b5(@5®) 12) (r@g(s(“)ln) + 0(5180)

It then follows from these results, (S129) and (S130) that

Pr [(nh) (RS + RY)? < x} - F( | (nh) 725(@ 5<b>12)
+ ((nh) Rebes(@ ) 512 4 (nh) dlﬁl’aé(“)) FO (x | (nh) Rgb5<a>5<b>zg) L

+2 ((nh) 6@SOE) F® (o | (nh) 3?8062 ) (R45L, ) + o0 (L($131)

Let ey == M—NTWN7 EN = EN — ey, N = N — uy and

2 wplike, 1Pl 4 (v49)” ) wptiih 4 (/%Z N, ) (Varjo= [N]) ™6 (v£6)

P1(0) = 3 0,2 3 0,2 2
(wp+1Var‘0i [eN]) (wp+1) (Var|ox [en])
w +1<p1/2 <5T (Varjo+ [N]) (,uéNM{,T) (Var)gx [N])f1 (5) (va6)
5/2
( p+1) \/ Var|o+ [
o <pu3TC0V‘0i [D,en] (v (1p,t) QDCOV‘Q:(: [D,en] 6T (Varje [N])f1 § (v40)
wgfl (Var|0i [eN Var|o+ [€N]wg’2
(1,1)* (Covio+ [D, N] (Varyos [N)) ™" 6) (149)”
wp;erarwi [en]
3
2wt 10 (VN0) 1
) w2 A O30 by

3 (wp;erarmi [eN]>3
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By tedious algebra and Lemma 3(a),

(nh) &5 @552 = P (8) +0(1)
2
2 (’I’Lh) Rgb(s(a)(s(b) Rg(s(“)li — g (nh) dlll,?l,a,?l,b,yl,c(s(a)5(17)6(0)17%

= P2(0)+0(1).

By Lemma 3(a,b), (S54), (S126) and (S123), we have (nh)&'4125(®) = O (h"). The conclusion follows from
these results, (S127), (S131), the fact that LR, (¢ | h) = (nh) (Rf + R0)2 + Oy, (I,h) and (S107).

S8 Proof of Theorem 8

Theorem 8 can be proven in a similar way as Theorem 1. Denote

. - X X

Wyt = eyl iy <h> K (h> 1(X; >0)

. X; X;

Wy = eyt <h) K <h> 1(X; <0)
Wp,i = Wp;-i—,i - Wp;—7i~

1 . 0 .
Let wp 4 = fo K+ (8) Kps (1) dt = @y, and @y, = [7) Ky () Kpi— () dt = —.

Lemma 15. Let V denote a random variable and {V1, ..., V,,} are i.i.d. copies of V.. Assume that nh® — co.
Suppose that K is a symmetric continuous PDF supported on [—1,1]. Let B C [z,Z] \ {0} denote an open

neighborhood of 0. The following results hold for all (s, k) € {—,4+} x N: (a) if gv is uniformly continuous

on B,
1. Wswo’k 1~ . Uy s
E|-WFV| =" 1) and E | =W, W, V| = =22702 1);
[h pis ] oh—1 +o(1) an {h pis Vs } o +0(1)
b) if gv is (p+ 1)-times continuously differentiable with uniformly continuous g(pH) on B,
\%
1 e
T 1 ,S . R .
W ZWp;s7i9V (Xz) = Mv)s + (p T 1)'005:1 1hp + Op (hp) ;

(¢c) if gy= is bounded on B,

% Z/W\ ;s,in;s,iVi -E [;Wp;swp;s‘/] =0, ((nh)_1/2) .
i
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Proof of Lemma 15. We take s = 4+ without loss of generality. For Part (a), we have

1. 1 ..
E{hwgﬁv] = E{hW,LgV(X)]

[ (et (7)) () v 0 5 )00

= [ el ()" B ) gy () £ )

LGS )

where the first equality follows from LIE, the third equality follows from change of variables, and the fourth

equality follows from (S5), continuity of gy and fx and applying the equality (S6) to (e;H,QH;’irp (y))k
(e;+1,2 (¢t V;i_) Tp (y))lC Similarly, we have
1~ . 1~ .
Bl Wpi Wy V| = Bl o Wi Wigv (X)
71 T T\ T 1 T T
- /0 g (erenittyon (7) K (5) ool (5) K (7)) ov (0 £ (@) o
%
[ T ) K () e T s () K ) v () £ ()l
— PV, +Wp,+ + (1)
¥
For Part (b), by Taylor’s theorem, for X; > 0,
(2) () (p+1) ( X)
v+ Pv+ v ’ 1
X,) = M x, X2 4o [BVE ) xp N S xp
f X, b dX;. D M 4@ o u® o). Th i
or some etween 0 an enote py = (ﬂV+’/~LV+vNV+/ ,qur/p.) . en, we write
(p+1) (X )
h2ZW”+29V hzz piti (rp (X) mZ:WerZ Y X (5132)
Clearly, by the definition of Wp;Jﬁi,
1 . 1 ~_ Xl X,L Xz
e ZWp;+,i (rp (Xi)py) = 2 Ze;—ﬁ-l,an,}Frl) (h> K (h) L(X;>0)r, <h> Hpy
_ e;+1,2HM+
N h
= . (5133)
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Write

(p+1) (% (p+1) _ (p+1)
1 v (Xl) o Z ( (XZ> Hv.+ )XP“
nh? < PR 1) h2 (p+1)! ¢
Nf§5+l)
+ p+1
i D, ¢l 134
h2 Z i+, (p+1)| i (S 3 )

v (S10) and (S5),

. X\ P
Wp;+,i <h>

IN

1

e (e (2 () x50

= 0,(1). (S135)

By this result, |K (X;/h)| < 1(]X;| < h) and continuity of g(pH) we have

( (p+1) (X) B (p+1))
i) —Hy 4
s p+1
nh2 Z (p+1)! X

,thJrl
<<nhz‘ / +1)!

) : ( sup ‘g P (@) — Y ) h? = oy (hP).
0<z<h

It now follows from this result, (S132), (S133) and (S134) that

(p+1)

1 i 1 : My,
—5 > Wowigy (X0) = )y + ? Wit X e (). (S136)

By triangle inequality, (S5) and (S10),

p+1

1 : X\ . X;

— i | T - — Wpri| — ;

nh Z:WP7+1 ( h ) nh z’b: p;+, < h > h 3T

~ 1 X; X; X\
_1 —1 7 7 2

L -1, {nh | (5 | (52) |(h>

<]

v (S5), Chebyshev’s inequality, change of variables and continuity of fx,

1. X\ _
. (5o o)

1 . X. p+1
— = —E
nh ; WP:‘FU/ ( h )
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By (S5), change of variables and continuity of fx,

1. X\ i e 1 x x\Ptl x
By et <h> ] = / (el (5)) () K (5) fx @) da
= ot +o(1).
It now follows from these results that
(p+1) p+1 (p+1)
1 : My 4 +1 1 ; X Hy 4
— Wy i ——XP = — Wyl — : h?
nhQEZ: P nhzi: P\ h (p+ 1)
M$+U
+ pll
= e Mo ().
Part (b) follows from this result and (S136).
For Part (c), write
1 - ) 1~ . 1 - ) N .
nh Z Wpit,iWpitiVi — E EWPH-W + V| = nh Z (Wp;-&-,inH—,i - Wp;-l—,in;—i-) Vi

1 ~ .. 1— .
* {nh Z Wit iWpitiVi — B [th;Jer;JrV} }

Then, by triangle inequality, LIE, change of variables, boundedness of gjy|, Markov’s inequality, and using

(S5), we have

1 - . — y 1 - . — y B
— > (Wp;+,in;+,i - Wp;+,¢Wp;+) Vil < — > ’Wp;+,in;+,i = Wit iWpiti| Vil = Op ((nh) 1/2) :

It follows from (S5), LIE, change of variables, Chebyshev’s inequality and boundedness of gy2 that
- Y Wt Wy iVi — E [1Wp;+W ;+V} =0p ((”h)_l/Q) :
nh - h
Part (c¢) follows from these results. [
Denote W 4 == (nh)f1 > WpinpyiAi and Ay =E [h’lprpA}.

Proof of Theorem 8. Using
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and

P
we have
%eb _ 1 WPJY;
’ S () (I//V\p,Z)

1 . by T 1 — . - 1 (Wpini) ((A;b)—r (Wp7i2i>>2{
- 2 Z W;DJY% - (>‘p ) W ; Wp,in,z‘YiZz‘ + W ; 1+ ()\eb)T (/Wp,iZi> \8137)

By Lemma 15(c), Uy 5 — Ay 5 = O, ((nh)_1/2>. By arguments similar to those used in the proof of (S21),

By these results, we have

~eb __ 1 W. .Y, ( ;b)-r AYZ O h2 1
p_nhzz pyiti h + P((” ) )
Using (S24) and Lemma 2, we have
~T eb . T N =1 0 -1
Al = | &y AL, |B2hn| o | +0u(m)™)
Uy
= 510,40, ((nh)*l) , (S138)

where

-~ -1 .
. _ AzoA o AuA
Yeed = (AZZT,Q - Z'QEQZTQ) (AYZ - Z’EZ Y> ,

By Lemmas 1(a) and 15(a), EZZT,Q = (w2’2/<p) hzzT + +o(1), zZ,2 = 2(w2’2/<p) pz + o(1), Ay =

2(w9?/9) +0(1), Ayz = (@p/@)ivzs + o(1) and Ay = (@p/9) py,s + o(1). Therefore, it follows

from these results, (S4) and the fact that for s € {—,+}, pzz7 s — pzpzr is positive definite that Jeq =

S70



(wp/wh?) Yted + 0 (1). Therefore, by this result, Uy, = O, ((nh)_1/2> and (S138), we have

~ 1 . w. Y, \/I;Z g\ —1/2
eb P ted 3

T, = —% E Wp,iYi — +o ( h ) .
p nhQ - p; ( 2,2) h p (n )

By lemma 15(b),

1 .
nh? Z WpYi = nh2 Z Wp igy ( h2 Z Wp (Y = gy (X))

O (“%”wﬁiﬁ’l -
! (M” o ) . (p+1)!

,,QZWW i — gv (X)) +o (k7).

Combining the above result and (S19), we have

(M(p“)w”“ 1 (p+1)wp+1,1>
~eb Y, + P+ Y,— D;—
— Merd = hP 4+ — E W X;
7Tp 7TSd (p+1)| + T ( ))
(p+1) p+1,1 (p+1) p+1,1
“p \ T (MZJr Yot Mz O )
— hP + — W
<w22>’7ted (»+ 1) "’ E i (Zi — 9z (Xy))

+0p ((nhs) _1/2>

(p+1) - +1.1 (p+1) - p+1,1 (p+1) p+1,1 (p+1) p+1,1
(zPapstt — ettt <wp> A s e A
= - Vted

(p+1)! (p+1)!

1 : N ] e o
+W ; w. \i (Y; — gy (Xz)) - <wgf)2) W Z W;D,thed (Z gz (Xz)) + 0p ((nh3) ) ]

K2

Therefore, we have

nh3 (ﬁEb - — %tEdhp)
. —~
= G = (Wi ) (55 Wone 2z () £ on) (5199
p
Following the same arguements for showing (S26), we obtain
Ty =~
7 2 (s 05— (60 = 2T, 0 (202 (050
P

= rZ( gy<X>>—E{’ﬁp,m;azi—gz(&)))+op(<nh>‘”2). (S140)
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By Lemma 1(a) and the definition of 4,1,

Var | 37 (W (0 v 000) = S 4 gZ<X>>)]
=[N g o]+ (22w [l :
= B[ 0 00|+ () B[ 2 - 0 00

-2 | ST, (= o (X)) (21— 52 (X))

w?
ngVar‘oi Y] - (ﬁ) 'yt—ngarmi [Z] Yted
2

+o(1). (S141)

Let ¢ € (0,1). We have

2+§‘|
2+<]

) Wird (21— gz )|

;E U\/iTh (Wp,i (Yi —gv (Xi)) — (f&) Wi (Zi — 92 (Xz‘))>

p

p

\W =y () = (5 ) Wi (2 - g2 (X0)

-

S 3
(nh)?
E |:h—1 ‘Wp’i 2+¢ (ly‘2+§ + |gY (X)|2+§):|
: (nh)?
{h ! ’W ’ (h/tedZ|2+< + ”YtTeng (X)|2+§>]
i (nh)? ’

where the inequalities follow from Loéve’s ¢, inequality. By (S5), change of variables and Markov’s inequality,

the numerators of the last two terms are O (1). Therefore, we have verified Lyapunov’s condition

2+¢
] — 0.

> (1 0 g () - (wg’;) Woirds (21— 92 (X))

By Lyapunov’s central limit theorem,

o s (W (¥ = gy (X0) = () Wi (2 — 92 (X))
\/Var [\/% ZZ (Wp’i (Yi —gv (X )) ( o= ) p7z'7ted (Zi — 9z (Xz)))}

—d N(O,].)

The conclusion follows from this result, (S139), (S140), (S141) and Slutsky’s lemma.



S9 Generalized balancing and regression adjustment

Clearly, we have D_y (w1, ..., wy || 1/n,...,1/n) = (2n) " Do {(n cw;)? — 1}. Consider the problem

. 1 )
11)11,?(.1.1.21)"% Z {(n : wi) — 1}

subject to sz /Wp,iZi =0, Zwl =1. (S142)

Define the Lagrangian function

L (W, eoey Wiy Ay ) = %Z{(nwl)z — 1} AT (Zwl sz ) — i (Zwl - 1) .

i 7

Then by the first-order conditions

n-w; — )\T </W\p,,ZL> — U = 0
Zwi WMZ = 0

Zwifl = 0

and partialing out p, we find the dual characterization of the solution (wg_bm, e wg_bz,n) to (S142):

gb _
W-o,; =

where

S| =
S
)
Ny
=
=
|
)
~
_|_
—
Sh
b-<
N\
o
|
>
S
>-<
S
N\
~—
4‘
>
hek o]
o

where 1
~ Vo0 S - Ty U P,
e . <\IJZZT’2—Z’2AZT’2—h-‘I’z‘I’;> <\I}YZ’2_Y’(21}Z’2_h.\IIY\I/Z> )
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Therefore,

]. b 1> ]. == ~gb
E ng_27iwp,iy; = % Z Wp,i (Y; - ZZT,‘Y%) :

By Lemma 1(a,b), 78 —, yy-.

S10 Covariate-adjusted inference on the treatment effect derivative

This section describes how to conduct inference using the EB TED estimator %;b proposed in Section 6 of

the main text. To calculate the standard error of ﬁzb, we introduce the following notations:

Oy = 1(X; > 0) (Yi = 1) (X0) Byps ) +1(Xi < 0) (Vi =) (X0) By, ) (S143)
0F: =1(X; > 0) (2] = 1] (X Brps ) + 1(Xi <0) (Zi = 1) (X0) Bz, ) (S144)

where

beRp+1

i S 08 () o of () )
is solved as

- 1 ~ X; X;
Bypr=H"! {nh ZH;L«I, (h) K (h) 1(X;>0) Yi} . (S145)

Analogously, B\y%_ is given by replacing 1 (X; > 0) in (S145) with 1 (X; < 0), Ezmﬁr given by replacing
Y; with Z;, and BZ%_ given by replacing both. Recalling the notations ¥y == (nh)™" o ﬁ/\;f’i, \TIAJC =
(nh)~" Do /W;’f,iAi and U4 = (nh)™" > Wp7in7iAi defined in Sections S1 and S8, we construct the following

estimator Jieq for wp e /wiy?:
~ = z2¥zT 9 ; z2¥y
Yed = | Wzz7 20— = Uyz — —%= .
\I/Q \112
Assume that the bandwidth satisfies nh?*3 = 0 (1) and nh® — co , we have

~eb
Ty, — Tsrd

—————— =4 N(0,1),
(nh?’)*l f/ted
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~ 1 . ~ —~ R ~ A R . o~ ~ o~
af/—ied = nh Z {W§;+,z‘ : U12/,i + W;Z;-l—,i "YtTed (UZ,Z‘UZT,@‘) Yeed = 2 Wpit iWpiti - Uy (UZT,i’Yted) } )

i=1

—

{Wﬁ;f,i : U)%,i + W;?;ai 'atZd (UZJUZT,i) :Y\ted -2 Wp;—,in;—ﬂ : UY,i (Ugﬁted)} ,

3

g
2|~
o

i=1

a/?ted — 77ted 4 4/7ted
= i .
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