- Instructor: 马骏
- Email: jun.ma@ruc.edu.cn
- Office: 北校区一号楼西配楼106
- Time: 周一18:00-20:25
- Venue: 明商206
2.Lecture Slides
- syllabus
- LT1 introduction
- LT2 statistical learning
- LT3 linear regression, updated: Oct 14
- LT4 classification, updated: Oct 28
- LT5 cv and bootstrap, updated: Oct 21
- LT6 model selection, updated: Nov 04
- LT7 nonlinear model, updated: Nov 16, 2022
- LT8 tree, updated: Nov 23, 2022
- LT9 deep learning
- LT10 recap
- final project, updated: Dec 26
- LT11 adaptive LASSO
- LT12 hd LASSO
- LT13 double LASSO, updated: Dec 8
- LT14 IV LASSO, updated: Dec 14, 2022
- LT15 causal forests, updated: Dec 30
- LT16 double ML
- LyX模版,bib
3.Labs
- R Markdown cheatsheets: 1, 2
- R Markdown tutorial
- R tutorial
- lab1.rmd, lab1.pdf, Auto.csv, Auto.data
- lab2.rmd, lab2.pdf
- lab3.rmd, lab3.pdf
- lab4.rmd, lab4.pdf
- lab5.rmd, lab5.pdf
- lab6.rmd, lab6.pdf
- lab7.rmd, lab7.pdf
- lab8.rmd, lab8.pdf
- lab9.rmd, lab9.pdf
- lab10.rmd, lab10.pdf
- lab11.rmd, lab11.pdf
- lab12.rmd, lab12.pdf
4. Reference
- Adaptive LASSO: Zou 2006
- Review papers: Belloni and Chernozhukov, Chernozhukov, Hansen and Spindler, Athey and Imbens
- High-dimensional econometrics in R
- hdm: high-dimensional metrics
- Double LASSO: Belloni, Chernozhukov and Hansen, 2014
- LASSO for IV: Belloni, Chen, Chernozhukov and Hansen, 2012; Chernozhukov, Hansen and Spindler, 2015
- Causal trees and forests: Athey and Imbens, 2016; Wager and Athey, 2018
- Causal forest application: Athey and Wager, 2019
- Inverse probability weighting estimation: Hirano, Imbens and Ridder, 2003
- Double LASSO for linear panel models: Belloni, Chernozhukov, Hansen and Kozbur, 2015; STATA code: https://statalasso.github.io/docs/pdslasso/pdslasso_panel/